Biotransformation of eugenol to ferulic acid by a recombinant strain of Ralstonia eutropha H16.
The gene loci ehyAB, calA, and calB, encoding eugenol hydroxylase, coniferyl alcohol dehydrogenase, and coniferyl aldehyde dehydrogenase, respectively, which are involved in the first steps of eugenol catabolism in Pseudomonas sp. strain HR199, were amplified by PCR and combined to construct a catabolic gene cassette. This gene cassette was cloned in the newly designed broad-host-range vector pBBR1-JO2 (pBBR1-JO2ehyABcalAcalB) and transferred to Ralstonia eutropha H16. A recombinant strain of R. eutropha H16 harboring this plasmid expressed functionally active eugenol hydroxylase, coniferyl alcohol dehydrogenase, and coniferyl aldehyde dehydrogenase. Cells of R. eutropha H16(pBBR1-JO2ehyABcalAcalB) from the late-exponential growth phase were used as biocatalysts for the biotransformation of eugenol to ferulic acid. A maximum conversion rate of 2.9 mmol of eugenol per h per liter of culture was achieved with a yield of 93.8 mol% of ferulic acid from eugenol within 20 h, without further optimization.[1]References
- Biotransformation of eugenol to ferulic acid by a recombinant strain of Ralstonia eutropha H16. Overhage, J., Steinbüchel, A., Priefert, H. Appl. Environ. Microbiol. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg