Acyclic nucleoside analogues as novel inhibitors of human mitochondrial thymidine kinase.
A series of acyclic nucleoside analogues of 5'-O-tritylthymidine have been synthesized and evaluated as potential human mitochondrial thymidine kinase (TK-2) inhibitors. In this series, the sugar moiety of the parent 5'-O-tritylthymidine has been replaced by aliphatic chains including (E)- and (Z)-butenol, butynol, or butanol. Among them the (Z)-butenyl derivative (10) showed an IC(50) against TK-2 of 1.5 microM, being 1 order of magnitude more potent than the parent 5'-O-tritylthymidine. This lead compound has been further modified by replacing the thymine base by other pyrimidine bases such as 5-iodouracil, 5-ethyluracil, 5-methylcytosine, 3-N-methylthymine, or 5,6-dihydrothymine, as well as by the purine base guanine. The trityl group has also been replaced by different aliphatic and aromatic acyl moieties including tert-butylacetyl, hexanoyl, decanoyl, and diphenylacetyl moieties. The evaluation of the compounds against TK-2 and the phylogenetically close HSV-1 TK has shown that the base moiety plays a crucial role in their interaction against these pyrimidine nucleoside kinases. Also, the presence of a lipophilic substituent, preferentially an aromatic moiety such as diphenylmethyl or triphenylmethyl, is required for efficient TK-2 inhibition. Whereas some compounds showed marked specificity for either TK-2 (i.e, the 5,6-dihydrothymine derivative, 26) or HSV-1 TK (i.e., the butynyl derivative, 11), some others, including the (Z)-and (E)-butenyl derivatives 10 and 12, showed significant inhibition against both enzymes. They also proved to be inhibitory against HSV-1 TK in intact human osteosarcoma cells that were transduced with the HSV-1 TK gene.[1]References
- Acyclic nucleoside analogues as novel inhibitors of human mitochondrial thymidine kinase. Hernández, A.I., Balzarini, J., Karlsson, A., Camarasa, M.J., Pérez-Pérez, M.J. J. Med. Chem. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg