The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

5-Methylcytosine     4-amino-5-methyl-3H- pyrimidin-2-one

Synonyms: SureCN22008, SureCN213586, AG-F-93645, SureCN5486426, ACMC-209lms, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of 5-Methylcytosine

 

High impact information on 5-Methylcytosine

 

Chemical compound and disease context of 5-Methylcytosine

 

Biological context of 5-Methylcytosine

 

Anatomical context of 5-Methylcytosine

  • We found, by representational difference analysis, that expression of DNA 5-methylcytosine transferase (dnmt1) in fos-transformed cells is three times the expression in normal fibroblasts and that fos-transformed cells contain about 20 percent more 5-methylcytosine than normal fibroblasts [19].
  • The analysis of modified base composition revealed the presence of methylated bases in chromoplast DNA, in which 5-methylcytosine was most abundant [20].
  • G.T mispairs, the sole mismatch type that can arise in "resting" mammalian DNA (through spontaneous hydrolytic deamination of 5-methylcytosine), are corrected in vivo with high efficiency and mostly to a G.C. We identified a protein factor, present in HeLa cell extracts, that binds selectively to DNA substrates containing this mismatch [21].
  • The extent of methylation of 18 sites in the PEPCK gene in adult liver, kidney, spleen, and heart muscle and in fetal liver has been analyzed using the 5-methylcytosine sensitive enzymes Hpa II and Hha I [22].
  • Patients have immunodeficiency, chromosome 1 (Chr1) and Chr16 pericentromeric anomalies in mitogen-stimulated lymphocytes, a small decrease in overall genomic 5-methylcytosine levels and much hypomethylation of Chr1 and Chr16 juxtacentromeric heterochromatin [23].
 

Associations of 5-Methylcytosine with other chemical compounds

 

Gene context of 5-Methylcytosine

 

Analytical, diagnostic and therapeutic context of 5-Methylcytosine

References

  1. DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Gehring, M., Huh, J.H., Hsieh, T.F., Penterman, J., Choi, Y., Harada, J.J., Goldberg, R.B., Fischer, R.L. Cell (2006) [Pubmed]
  2. Methylation of milk-borne and genetically transmitted mouse mammary tumor virus proviral DNA. Cohen, J.C. Cell (1980) [Pubmed]
  3. Amplified ribosomal RNA genes in a rat hepatoma cell line are enriched in 5-methylcytosine. Tantravahi, U., Guntaka, R.V., Erlanger, B.F., Miller, O.J. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  4. DNA methylation in adenovirus, adenovirus-transformed cells, and host cells. Gunthert, U., Schweiger, M., Stupp, M., Doerfler, W. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  5. The DNA methyltransferases of mammals. Bestor, T.H. Hum. Mol. Genet. (2000) [Pubmed]
  6. Role for DNA methylation in the control of cell type specific maspin expression. Futscher, B.W., Oshiro, M.M., Wozniak, R.J., Holtan, N., Hanigan, C.L., Duan, H., Domann, F.E. Nat. Genet. (2002) [Pubmed]
  7. Cancer epigenetics comes of age. Jones, P.A., Laird, P.W. Nat. Genet. (1999) [Pubmed]
  8. CpNpG methylation in mammalian cells. Clark, S.J., Harrison, J., Frommer, M. Nat. Genet. (1995) [Pubmed]
  9. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Lewis, J.D., Meehan, R.R., Henzel, W.J., Maurer-Fogy, I., Jeppesen, P., Klein, F., Bird, A. Cell (1992) [Pubmed]
  10. Different base/base mispairs are corrected with different efficiencies and specificities in monkey kidney cells. Brown, T.C., Jiricny, J. Cell (1988) [Pubmed]
  11. Overproduction of DNA cytosine methyltransferases causes methylation and C --> T mutations at non-canonical sites. Bandaru, B., Gopal, J., Bhagwat, A.S. J. Biol. Chem. (1996) [Pubmed]
  12. 5-methyl-dCTP deaminase induced by bacteriophage XP-12. Wang, R.Y., Ehrlich, M. J. Virol. (1982) [Pubmed]
  13. The Vsr endonuclease of Escherichia coli: an efficient DNA repair enzyme and a potent mutagen. Macintyre, G., Doiron, K.M., Cupples, C.G. J. Bacteriol. (1997) [Pubmed]
  14. Identification of a PD-(D/E)XK-like domain with a novel configuration of the endonuclease active site in the methyl-directed restriction enzyme Mrr and its homologs. Bujnicki, J.M., Rychlewski, L. Gene (2001) [Pubmed]
  15. Deoxyribonucleic acid-cytosine methylation by host- and plasmid-controlled enzymes. May, M.S., Hattaman, S. J. Bacteriol. (1975) [Pubmed]
  16. A specific mismatch repair event protects mammalian cells from loss of 5-methylcytosine. Brown, T.C., Jiricny, J. Cell (1987) [Pubmed]
  17. Localization of 5-methylcytosine in human metaphase chromosomes by immunoelectron microscopy. Lubit, B.W., Pham, T.D., Miller, O.J., Erlanger, B.F. Cell (1976) [Pubmed]
  18. Heavily methylated amplified DNA in transformants of Neurospora crassa. Bull, J.H., Wootton, J.C. Nature (1984) [Pubmed]
  19. Role of DNA 5-methylcytosine transferase in cell transformation by fos. Bakin, A.V., Curran, T. Science (1999) [Pubmed]
  20. Transcriptional regulation and DNA methylation in plastids during transitional conversion of chloroplasts to chromoplasts. Kobayashi, H., Ngernprasirtsiri, J., Akazawa, T. EMBO J. (1990) [Pubmed]
  21. A human 200-kDa protein binds selectively to DNA fragments containing G.T mismatches. Jiricny, J., Hughes, M., Corman, N., Rudkin, B.B. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  22. Sequential changes in DNA methylation patterns of the rat phosphoenolpyruvate carboxykinase gene during development. Benvenisty, N., Mencher, D., Meyuhas, O., Razin, A., Reshef, L. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  23. DNA methyltransferase 3B mutations linked to the ICF syndrome cause dysregulation of lymphogenesis genes. Ehrlich, M., Buchanan, K.L., Tsien, F., Jiang, G., Sun, B., Uicker, W., Weemaes, C.M., Smeets, D., Sperling, K., Belohradsky, B.H., Tommerup, N., Misek, D.E., Rouillard, J.M., Kuick, R., Hanash, S.M. Hum. Mol. Genet. (2001) [Pubmed]
  24. DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Xiao, W., Custard, K.D., Brown, R.C., Lemmon, B.E., Harada, J.J., Goldberg, R.B., Fischer, R.L. Plant Cell (2006) [Pubmed]
  25. Active mammalian replication origins are associated with a high-density cluster of mCpG dinucleotides. Rein, T., Zorbas, H., DePamphilis, M.L. Mol. Cell. Biol. (1997) [Pubmed]
  26. Inhibition of DNA methylation by S-adenosylethionine with the production of methyl-deficient DNA in regenerating rat liver. Cox, R., Irving, C.C. Cancer Res. (1977) [Pubmed]
  27. Inhibition of human O6-methylguanine-DNA methyltransferase by 5-methylcytosine. Bentivegna, S.S., Bresnick, E. Cancer Res. (1994) [Pubmed]
  28. Genome-wide hypomethylation in hepatocellular carcinogenesis. Lin, C.H., Hsieh, S.Y., Sheen, I.S., Lee, W.C., Chen, T.C., Shyu, W.C., Liaw, Y.F. Cancer Res. (2001) [Pubmed]
  29. A candidate mammalian DNA methyltransferase related to pmt1p of fission yeast. Yoder, J.A., Bestor, T.H. Hum. Mol. Genet. (1998) [Pubmed]
  30. Biphasic kinetics of the human DNA repair protein MED1 (MBD4), a mismatch-specific DNA N-glycosylase. Petronzelli, F., Riccio, A., Markham, G.D., Seeholzer, S.H., Stoerker, J., Genuardi, M., Yeung, A.T., Matsumoto, Y., Bellacosa, A. J. Biol. Chem. (2000) [Pubmed]
  31. Increased protein stability causes DNA methyltransferase 1 dysregulation in breast cancer. Agoston, A.T., Argani, P., Yegnasubramanian, S., De Marzo, A.M., Ansari-Lari, M.A., Hicks, J.L., Davidson, N.E., Nelson, W.G. J. Biol. Chem. (2005) [Pubmed]
  32. MBD3L1 is a transcriptional repressor that interacts with methyl-CpG-binding protein 2 (MBD2) and components of the NuRD complex. Jiang, C.L., Jin, S.G., Pfeifer, G.P. J. Biol. Chem. (2004) [Pubmed]
  33. Gene reactivation: a tool for the isolation of mammalian DNA methylation mutants. Gounari, F., Banks, G.R., Khazaie, K., Jeggo, P.A., Holliday, R. Genes Dev. (1987) [Pubmed]
  34. DNA of Drosophila melanogaster contains 5-methylcytosine. Gowher, H., Leismann, O., Jeltsch, A. EMBO J. (2000) [Pubmed]
  35. Estimation of the amount of 5-methylcytosine in Drosophila melanogaster DNA by amplified ELISA and photoacoustic spectroscopy. Achwal, C.W., Ganguly, P., Chandra, H.S. EMBO J. (1984) [Pubmed]
  36. Tissue specificity and clustering of methylated cystosines in bovine satellite I DNA. Sano, H., Sager, R. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  37. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Frommer, M., McDonald, L.E., Millar, D.S., Collis, C.M., Watt, F., Grigg, G.W., Molloy, P.L., Paul, C.L. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
 
WikiGenes - Universities