Inhibition of Wilms tumor 1 transactivation by bone marrow zinc finger 2, a novel transcriptional repressor.
The Wilms tumor suppressor gene, wt1, encodes a zinc finger transcription factor that has been implicated in the regulation of a number of genes. Protein-protein interactions are known to modulate the transcription regulatory functions of Wilms tumor (WT1) and have also implicated WT1 in splicing. In this report, we identify a novel WT1-interacting protein, bone marrow zinc finger 2 (BMZF2), by affinity chromatography utilizing immobilized WT1 protein. BMZF2 is a potential transcription factor with 18 zinc fingers. The BMZF2 mRNA is mainly expressed in fetal tissues, and the protein is predominantly nuclear. Co-immunoprecipitation experiments are consistent with an in vivo association between WT1 and BMZF2. Glutathione S-transferase pulldown assays and far Western blots revealed that zinc fingers VI-X (amino acids 231-370) are required for interaction with the zinc finger region of WT1. Functionally, BMZF2 inhibits transcriptional activation by WT1. Moreover, a chimeric protein generated by fusion of BMZF2 to the GAL4 DNA-binding domain significantly decreases promoter activity of a reporter containing GAL4 DNA-binding sites, suggesting the presence of an active repressor domain within BMZF2. Our results suggest that BMZF2 interferes with the transactivation potential of WT1.[1]References
- Inhibition of Wilms tumor 1 transactivation by bone marrow zinc finger 2, a novel transcriptional repressor. Lee, T.H., Lwu, S., Kim, J., Pelletier, J. J. Biol. Chem. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg