The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Blotting, Far-Western

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

High impact information on Blotting, Far-Western


Biological context of Blotting, Far-Western


Anatomical context of Blotting, Far-Western


Associations of Blotting, Far-Western with chemical compounds


Gene context of Blotting, Far-Western

  • Finally, a direct interaction between RFX5 and CIITA was detected with the yeast two-hybrid and far-Western blot assays [16].
  • SH2-Bbetac also binds to immunoprecipitated wild-type but not kinase-inactive JAK2 in a far Western blot [17].
  • Comparative far Western blots have shown that hTAF(II)135 interacts strongly with hTAF(II)20, moderately with hTAF(II)150, and weakly with hTAF(II)43 and hTAF(II)250 [18].
  • Far-Western blotting detected interaction of SATB1 and CDP in several different tissue extracts [19].
  • Far-Western blotting and synthetic phosphopeptide competition assays further indicated that the Lyn SH2 domain directly binds to the tyrosine-phosphorylated EpoR, most likely through its interaction with phosphorylated Y-464 or Y-479 in the carboxy-terminal region of the EpoR [20].

Analytical, diagnostic and therapeutic context of Blotting, Far-Western


  1. Interaction between the U1 snRNP-A protein and the 160-kD subunit of cleavage-polyadenylation specificity factor increases polyadenylation efficiency in vitro. Lutz, C.S., Murthy, K.G., Schek, N., O'Connor, J.P., Manley, J.L., Alwine, J.C. Genes Dev. (1996) [Pubmed]
  2. Protein kinase CK2 and protein kinase D are associated with the COP9 signalosome. Uhle, S., Medalia, O., Waldron, R., Dumdey, R., Henklein, P., Bech-Otschir, D., Huang, X., Berse, M., Sperling, J., Schade, R., Dubiel, W. EMBO J. (2003) [Pubmed]
  3. Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein. Kubota, Y., Nash, R.A., Klungland, A., Schär, P., Barnes, D.E., Lindahl, T. EMBO J. (1996) [Pubmed]
  4. RNA polymerase I associated factor 53 binds to the nucleolar transcription factor UBF and functions in specific rDNA transcription. Hanada, K., Song, C.Z., Yamamoto, K., Yano, K., Maeda, Y., Yamaguchi, K., Muramatsu, M. EMBO J. (1996) [Pubmed]
  5. Profiling the global tyrosine phosphorylation state by Src homology 2 domain binding. Nollau, P., Mayer, B.J. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  6. The Csk homologous kinase associates with TrkA receptors and is involved in neurite outgrowth of PC12 cells. Yamashita, H., Avraham, S., Jiang, S., Dikic, I., Avraham, H. J. Biol. Chem. (1999) [Pubmed]
  7. Poly(A) polymerase I of Escherichia coli: characterization of the catalytic domain, an RNA binding site and regions for the interaction with proteins involved in mRNA degradation. Raynal, L.C., Carpousis, A.J. Mol. Microbiol. (1999) [Pubmed]
  8. Functional analysis of CK2beta-derived synthetic fragments. Meggio, F., Marin, O., Sarno, S., Pinna, L.A. Mol. Cell. Biochem. (1999) [Pubmed]
  9. Evidence for ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) self-association through PDZ-PDZ interactions. Fouassier, L., Yun, C.C., Fitz, J.G., Doctor, R.B. J. Biol. Chem. (2000) [Pubmed]
  10. Hepatitis C virus envelope proteins bind lactoferrin. Yi, M., Kaneko, S., Yu, D.Y., Murakami, S. J. Virol. (1997) [Pubmed]
  11. Interaction of proteins with transcriptionally active estrogen receptors. Cavaillès, V., Dauvois, S., Danielian, P.S., Parker, M.G. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  12. The transactivation and p53-interacting functions of hepatitis B virus X protein are mutually interfering but distinct. Lin, Y., Nomura, T., Yamashita, T., Dorjsuren, D., Tang, H., Murakami, S. Cancer Res. (1997) [Pubmed]
  13. Phosphorylation of tyrosine 537 on the human estrogen receptor is required for binding to an estrogen response element. Arnold, S.F., Vorojeikina, D.P., Notides, A.C. J. Biol. Chem. (1995) [Pubmed]
  14. Rad, a novel Ras-related GTPase, interacts with skeletal muscle beta-tropomyosin. Zhu, J., Bilan, P.J., Moyers, J.S., Antonetti, D.A., Kahn, C.R. J. Biol. Chem. (1996) [Pubmed]
  15. Localization of human cytomegalovirus structural proteins to the nuclear matrix of infected human fibroblasts. Sanchez, V., Angeletti, P.C., Engler, J.A., Britt, W.J. J. Virol. (1998) [Pubmed]
  16. Specific complex formation between the type II bare lymphocyte syndrome-associated transactivators CIITA and RFX5. Scholl, T., Mahanta, S.K., Strominger, J.L. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  17. Identification of SH2-Bbeta as a substrate of the tyrosine kinase JAK2 involved in growth hormone signaling. Rui, L., Mathews, L.S., Hotta, K., Gustafson, T.A., Carter-Su, C. Mol. Cell. Biol. (1997) [Pubmed]
  18. Positive and negative TAF(II) functions that suggest a dynamic TFIID structure and elicit synergy with traps in activator-induced transcription. Guermah, M., Tao, Y., Roeder, R.G. Mol. Cell. Biol. (2001) [Pubmed]
  19. Homeoproteins CDP and SATB1 interact: potential for tissue-specific regulation. Liu, J., Barnett, A., Neufeld, E.J., Dudley, J.P. Mol. Cell. Biol. (1999) [Pubmed]
  20. Lyn physically associates with the erythropoietin receptor and may play a role in activation of the Stat5 pathway. Chin, H., Arai, A., Wakao, H., Kamiyama, R., Miyasaka, N., Miura, O. Blood (1998) [Pubmed]
  21. The Groucho/transducin-like enhancer of split transcriptional repressors interact with the genetically defined amino-terminal silencing domain of histone H3. Palaparti, A., Baratz, A., Stifani, S. J. Biol. Chem. (1997) [Pubmed]
  22. Adenovirus preterminal protein binds to the CAD enzyme at active sites of viral DNA replication on the nuclear matrix. Angeletti, P.C., Engler, J.A. J. Virol. (1998) [Pubmed]
  23. Coordinated control of fetal gastric epithelial functions by insulin-like growth factors and their binding proteins. Tremblay, E., Chailler, P., Ménard, D. Endocrinology (2001) [Pubmed]
WikiGenes - Universities