The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Cleavage of chromogranin A N-terminal domain by plasmin provides a new mechanism for regulating cell adhesion.

It has been proposed that chromogranin A ( CgA), a protein secreted by many normal and neoplastic neuroendocrine cells, can play a role as a positive or a negative modulator of cell adhesion. The mechanisms that regulate these extracellular functions of CgA are unknown. We show here that plasmin can regulate the anti/pro-adhesive activity of CgA by proteolytic cleavage of the N-terminal domain. Limited proteolytic processing decreased its anti-adhesive activity and induced pro-adhesive effects in fibronectin or serum-dependent fibroblast adhesion assays. Cleavage of Lys(77)-Lys(78) dibasic site in CgA(1-115) was relatively rapid and associated with an increase of pro-adhesive effect. In contrast, antibodies against the region 53-90 enhanced the anti-adhesive activity of CgA and CgA(1-115). Structure-activity relationship studies showed that the conserved region 47-64 (RILSILRHQNLLKELQDL) is critical for both pro- and anti-adhesive activity. These findings suggest that CgA might work on one hand as a negative modulator of cell adhesion and on the other hand as a precursor of positive modulators, the latter requiring proteolytic processing for activation. Given the importance of plasminogen activation in tissue invasion and remodeling, the interplay between CgA and plasmin could provide a novel mechanism for regulating fibroblast adhesion and function in neuroendocrine tumors.[1]


  1. Cleavage of chromogranin A N-terminal domain by plasmin provides a new mechanism for regulating cell adhesion. Colombo, B., Longhi, R., Marinzi, C., Magni, F., Cattaneo, A., Yoo, S.H., Curnis, F., Corti, A. J. Biol. Chem. (2002) [Pubmed]
WikiGenes - Universities