The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Transport of cholesterol into mitochondria is rate-limiting for bile acid synthesis via the alternative pathway in primary rat hepatocytes.

Bile acid synthesis occurs mainly via two pathways: the "classic" pathway, initiated by microsomal cholesterol 7alpha-hydroxylase (CYP7A1), and an "alternative" (acidic) pathway, initiated by sterol 27-hydroxylase (CYP27). CYP27 is located in the inner mitochondrial membrane, where cholesterol content is very low. We hypothesized that cholesterol transport into mitochondria may be rate-limiting for bile acid synthesis via the "alternative" pathway. Overexpression of the gene encoding steroidogenic acute regulatory (StAR) protein, a known mitochondrial cholesterol transport protein, led to a 5-fold increase in bile acid synthesis. An increase in StAR protein coincided with an increase in bile acid synthesis. CYP27 overexpression increased bile acid synthesis by <2-fold. The rates of bile acid synthesis following a combination of StAR plus CYP27 overexpression were similar to those obtained with StAR alone. TLC analysis of (14)C-labeled bile acids synthesized in cells overexpressing StAR showed a 5-fold increase in muricholic acid; in chloroform-extractable products, a dramatic increase was seen in bile acid biosynthesis intermediates (27- and 7,27-hydroxycholesterol). High-performance liquid chromatography analysis showed that 27-hydroxycholesterol accumulated in the mitochondria of StAR-overexpressing cells only. These findings suggest that cholesterol delivery to the inner mitochondrial membrane is the predominant rate-determining step for bile acid synthesis via the alternative pathway.[1]

References

  1. Transport of cholesterol into mitochondria is rate-limiting for bile acid synthesis via the alternative pathway in primary rat hepatocytes. Pandak, W.M., Ren, S., Marques, D., Hall, E., Redford, K., Mallonee, D., Bohdan, P., Heuman, D., Gil, G., Hylemon, P. J. Biol. Chem. (2002) [Pubmed]
 
WikiGenes - Universities