The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Bile salt     4-[(3R,5S,7R,12S)-3,7,12- trihydroxy-10,13...

Synonyms: C01558
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of C01558

 

Psychiatry related information on C01558

 

High impact information on C01558

 

Chemical compound and disease context of C01558

 

Biological context of C01558

 

Anatomical context of C01558

 

Associations of C01558 with other chemical compounds

  • Bile acid synthesis by cultured hepatocytes. Inhibition by mevinolin, but not by bile acids [23].
  • RESULTS: Bile acid perfusion did not significantly alter stimulated pancreatic enzyme, bilirubin or bile acid output or plasma CCK [24].
  • Bile acid breath tests and lactose tolerance tests were not, however, reliable indicators of jejunal bacterial overgrowth [25].
  • The presence of a hydroxy group at the C-23 position increased the acidity of the BA and this accounted for poor absorption within the biliary tree and efficient biliary secretion without the need for conjugation [26].
  • These experiments are consistent with the hypothesis that sn-1 palmitoyl L species are subselected for bile, in part, by physical-chemical interactions of intracellular BS concentrations with Ch-poor membranes and that the subsequent evolution of Ch-rich vesicles and Ch-saturated mixed micelles occurs via a transitional hexagonal (rod) phase [27].
 

Gene context of C01558

 

Analytical, diagnostic and therapeutic context of C01558

 

 

References

  1. Bile salt sensitivity of Escherichia coli chi1776. Hunter, J.R., Ellwood, D.C., Atkinson, A., Greenaway, P.J. Nature (1978) [Pubmed]
  2. Bile acid synthesis by long-term cultured cell line established from human hepatoblastoma. Amuro, Y., Tanaka, M., Higashino, K., Hayashi, E., Endo, T., Kishimoto, S., Nakabayashi, H., Sato, J. J. Clin. Invest. (1982) [Pubmed]
  3. Bile salt kinetics in cystic fibrosis: influence of pancreatic enzyme replacement. Watkins, J.B., Tercyak, A.M., Szczepanik, P., Klein, P.D. Gastroenterology (1977) [Pubmed]
  4. Bile acid synthesis is increased in Chilean Hispanics with gallstones and in gallstone high-risk Mapuche Indians. Gälman, C., Miquel, J.F., Pérez, R.M., Einarsson, C., Ståhle, L., Marshall, G., Nervi, F., Rudling, M. Gastroenterology (2004) [Pubmed]
  5. Bile salt malabsorption in pancreatic insufficiency secondary to alcoholic pancreatitis. Dutta, S.K., Anand, K., Gadacz, T.R. Gastroenterology (1986) [Pubmed]
  6. Serum concentrations and excretion of bile acids in cirrhosis. Jönsson, G., Hedenborg, G., Wisén, O., Norman, A. Scand. J. Clin. Lab. Invest. (1992) [Pubmed]
  7. Bile acid regulation of gene expression: roles of nuclear hormone receptors. Chiang, J.Y. Endocr. Rev. (2002) [Pubmed]
  8. Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. Claudel, T., Sturm, E., Duez, H., Torra, I.P., Sirvent, A., Kosykh, V., Fruchart, J.C., Dallongeville, J., Hum, D.W., Kuipers, F., Staels, B. J. Clin. Invest. (2002) [Pubmed]
  9. Studies in mice, hamsters, and rats demonstrate that repression of hepatic apoA-I expression by taurocholic acid in mice is not mediated by the farnesoid-X-receptor. Gardès, C., Blum, D., Bleicher, K., Chaput, E., Ebeling, M., Hartman, P., Handschin, C., Richter, H., Benson, G.M. J. Lipid. Res. (2011) [Pubmed]
  10. Biliary lipids, bile acids, and gallbladder function in the human female. Effects of pregnancy and the ovulatory cycle. Kern, F., Everson, G.T., DeMark, B., McKinley, C., Showalter, R., Erfling, W., Braverman, D.Z., Szczepanik-van Leeuwen, P., Klein, P.D. J. Clin. Invest. (1981) [Pubmed]
  11. Bile acid-induced increase in bile acid-independent flow and plasma membrane NaK-ATPase activity in rat liver. Wannagat, R.J., Adler, R.D., Ockner, R.K. J. Clin. Invest. (1978) [Pubmed]
  12. Regulation of pancreatic and gallbladder functions by intraluminal fatty acids and bile acids in man. Malagelada, J.R., DiMagno, E.P., Summerskill, W.H., Go, V.L. J. Clin. Invest. (1976) [Pubmed]
  13. Elevated levels of bile acids in colostrum of patients with cholestasis of pregnancy are decreased following ursodeoxycholic acid therapy [see comemnts]. Brites, D., Rodrigues, C.M. J. Hepatol. (1998) [Pubmed]
  14. Abcg5/Abcg8-independent pathways contribute to hepatobiliary cholesterol secretion in mice. Plösch, T., van der Veen, J.N., Havinga, R., Huijkman, N.C., Bloks, V.W., Kuipers, F. Am. J. Physiol. Gastrointest. Liver Physiol. (2006) [Pubmed]
  15. Taurine and cholestasis associated to TPN. Experimental study in rabbit model. Moran, J.M., Salas, J., Botello, F., Macià, E., Climent, V. Pediatr. Surg. Int. (2005) [Pubmed]
  16. Cathepsin B contributes to bile salt-induced apoptosis of rat hepatocytes. Roberts, L.R., Kurosawa, H., Bronk, S.F., Fesmier, P.J., Agellon, L.B., Leung, W.Y., Mao, F., Gores, G.J. Gastroenterology (1997) [Pubmed]
  17. The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp. Denson, L.A., Sturm, E., Echevarria, W., Zimmerman, T.L., Makishima, M., Mangelsdorf, D.J., Karpen, S.J. Gastroenterology (2001) [Pubmed]
  18. Bile acid output and the interdigestive migrating motor complex in normals and in cholecystectomy patients. Peeters, T.L., Vantrappen, G., Janssens, J. Gastroenterology (1980) [Pubmed]
  19. Bile acid synthesis in humans has a rapid diurnal variation that is asynchronous with cholesterol synthesis. Gälman, C., Angelin, B., Rudling, M. Gastroenterology (2005) [Pubmed]
  20. Bile acid concentrations in human and rat liver tissue and in hepatocyte nuclei. Setchell, K.D., Rodrigues, C.M., Clerici, C., Solinas, A., Morelli, A., Gartung, C., Boyer, J. Gastroenterology (1997) [Pubmed]
  21. Bile acid metabolism in benign recurrent intrahepatic cholestasis. Comparative studies on the icteric and anicteric phases of a single case. Endo, T., Uchida, K., Amuro, Y., Higashino, K., Yamamura, Y. Gastroenterology (1979) [Pubmed]
  22. Bile acid transport by basal membrane vesicles of human term placental trophoblast. Marin, J.J., Serrano, M.A., el-Mir, M.Y., Eleno, N., Boyd, C.A. Gastroenterology (1990) [Pubmed]
  23. Bile acid synthesis by cultured hepatocytes. Inhibition by mevinolin, but not by bile acids. Davis, R.A., Highsmith, W.E., McNeal, M.M., Schexnayder, J.A., Kuan, J.C. J. Biol. Chem. (1983) [Pubmed]
  24. Physiological control of cholecystokinin release and pancreatic enzyme secretion by intraduodenal bile acids. Koop, I., Schindler, M., Bosshammer, A., Scheibner, J., Stange, E., Koop, H. Gut (1996) [Pubmed]
  25. Dysfunction of the continent ileostomy: clinical features and bacteriology. Kelly, D.G., Phillips, S.F., Kelly, K.A., Weinstein, W.M., Gilchrist, M.J. Gut (1983) [Pubmed]
  26. Physicochemical and biological properties of natural and synthetic C-22 and C-23 hydroxylated bile acids. Roda, A., Grigolo, B., Minutello, A., Pellicciari, R., Natalini, B. J. Lipid Res. (1990) [Pubmed]
  27. Structural alterations in lecithin-cholesterol vesicles following interactions with monomeric and micellar bile salts: physical-chemical basis for subselection of biliary lecithin species and aggregative states of biliary lipids during bile formation. Cohen, D.E., Angelico, M., Carey, M.C. J. Lipid Res. (1990) [Pubmed]
  28. Bile acid-induced activation of activator protein-1 requires both extracellular signal-regulated kinase and protein kinase C signaling. Qiao, D., Chen, W., Stratagoules, E.D., Martinez, J.D. J. Biol. Chem. (2000) [Pubmed]
  29. Bile acid transport in sister of P-glycoprotein (ABCB11) knockout mice. Lam, P., Wang, R., Ling, V. Biochemistry (2005) [Pubmed]
  30. Alternate pathways of bile acid synthesis in the cholesterol 7alpha-hydroxylase knockout mouse are not upregulated by either cholesterol or cholestyramine feeding. Schwarz, M., Russell, D.W., Dietschy, J.M., Turley, S.D. J. Lipid Res. (2001) [Pubmed]
  31. Bile acid signaling through FXR induces intracellular adhesion molecule-1 expression in mouse liver and human hepatocytes. Qin, P., Borges-Marcucci, L.A., Evans, M.J., Harnish, D.C. Am. J. Physiol. Gastrointest. Liver Physiol. (2005) [Pubmed]
  32. Bile acid-induced alterations of mucin production in differentiated human colon cancer cell lines. Shekels, L.L., Lyftogt, C.T., Ho, S.B. Int. J. Biochem. Cell Biol. (1996) [Pubmed]
  33. Role of primary and secondary bile acids as feedback inhibitors of bile acid synthesis in the rat in vivo. Stange, E.F., Scheibner, J., Ditschuneit, H. J. Clin. Invest. (1989) [Pubmed]
  34. Bile salt deconjugation breath tests. King, C.E., Toskes, P.P. Gastroenterology (1978) [Pubmed]
  35. Reflux-related gastric mucosal injury is associated with increased mucosal histamine content in humans. Bechi, P., Amorosi, A., Mazzanti, R., Dei, R., Bianchi, S., Mugnai, L., Masini, E. Gastroenterology (1993) [Pubmed]
  36. Bile acid conjugation in organ culture of human fetal liver. Haber, L.R., Vaupshas, V., Vitullo, B.B., Seemayer, T.A., de Belle, R.C. Gastroenterology (1978) [Pubmed]
  37. Evidence for an ATP-dependent bile acid transport protein other than the canalicular liver ecto-ATPase in rats. Luther, T.T., Hammerman, P., Rahmaoui, C.M., Lee, P.P., Sela-Herman, S., Matula, G.S., Ananthanarayanan, M., Suchy, F.J., Cavalieri, R.R., Lomri, N., Scharschmidt, B.F. Gastroenterology (1997) [Pubmed]
 
WikiGenes - Universities