Relevance of extracellular matrix and its receptors in mammalian nephrogenesis revealed by metanephric organ culture system.
Mammalian nephrogenesis is modulated by a number of extracellular matrix ( ECM) glycoproteins, integrins and cell adhesion molecules. We demonstrated the existence of integrins alphavbeta1, alphavbeta3, alphavbeta5 and alphavbeta6 in epithelial elements of developing nephrons. Fibrillin-1 is a putative ligand for integrin alphavbeta3, and tubulointerstitial nephritis antigen ( TIN-ag) is a ligand for integrins alphavbeta3 and alpha3beta1. Fibrillin-1 and TIN-ag are also differentially expressed in the developing kidney. The inclusion of antisense oligonucleotide in a mouse kidney organ culture system indicated that the alphav-related integrins and their ligands play an important role in mammalian nephrogenesis. Recently identified modulators of cell-matrix interactions, i.e. beta-galactoside-binding mammalian lectins (galectins), are involved in cell-cell and cell-matrix interactions by cross-linking glycoconjugates located on the ECM and membrane-bound glycoproteins. We identified and cloned a new member of the galectins from embryonic kidneys, and designated it galectin-9. Since high glucose alters the expression of ECM proteins and integrins, we also investigated the influence of glucose on metanephric development. The presence of 30 mM D-glucose in metanephric organ culture induced dysmorphogenesis of the kidney accompanied by decreased expression of perlecan. Furthermore, we screened the genes differentially expressed under high glucose conditions in streptozotocin-induced newborn mouse kidneys by representational difference analysis of cDNA. We identified translocase of inner mitochondrial membrane (Tim44) and renal-specific oxido-reductase ( RSOR). The roles of these molecules in glucose-induced dysmorphogenesis and the relationship with ECM-related molecules need to be addressed.[1]References
- Relevance of extracellular matrix and its receptors in mammalian nephrogenesis revealed by metanephric organ culture system. Wada, J., Kanwar, Y.S., Makino, H. Nephrol. Dial. Transplant. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









