The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Truncated forms of glycoprotein D of herpes simplex virus 1 capable of blocking apoptosis and of low-efficiency entry into cells form a heterodimer dependent on the presence of a cysteine located in the shared transmembrane domains.

Earlier studies have shown that herpes simplex virus 1 (HSV-1) virions of mutant lacking glycoprotein D ( gD) and made in either complementing ( gD(-/+) stocks) or noncomplementing cells ( gD(-/-) stocks) induce apoptosis. Subsequent studies have shown that apoptosis induced by gD(-/-) mutant virus stocks can be blocked by in trans delivery of viral genes that encode either intact gD or a mixture of two genes encoding the glycoprotein ectodomain plus transmembrane domain (gD-B) and transmembrane domain plus the cytoplasmic carboxyl terminus of the protein (gD-D), respectively. Since the presence of the transmembrane domains was critical for precluding apoptosis in the bipartite system, the question arose whether the two components, gD-B and gD-D, form a heterodimer mediated by an unpaired cysteine located in the transmembrane domain. We report the following. (i) The substitution of the unpaired cysteine with serine in either gD-B or gD-D truncated forms of gD disabled the ability of gD-D and gD-B to block apoptosis. (ii) Immunoprecipitation of gD-D coprecipitated gD-B only from lysates of cells transduced with gD-D and gD-B containing the cysteine in the transmembrane domains. Replacement of cysteine with serine ablated coprecipitation of the components. (ii) The mixture of gD-D and gD-B complemented at a low level gD(-/+) virions. We conclude that the gD-B and gD-D can form a heterodimer dependent on the presence of cysteines in the transmembrane domain and the heterodimer can substitute for intact gD but at a much reduced efficiency.[1]

References

 
WikiGenes - Universities