The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Beneficial effect of pentaerythrityl tetranitrate on functional and morphological changes in the rat thoracic aorta evoked by long-term nitric oxide synthase inhibition.

The present study examined whether pentaerythrityl tetranitrate (PETN), a tolerance-devoid exogenous donor of nitric oxide (NO), could attenuate functional and morphological changes in the rat thoracic aorta evoked by 6-week NO synthase inhibition by NG-nitro-L-arginine methyl ester (L-NAME). Systolic blood pressure in L-NAME + PETN-treated rats (163 +/- 1 mm Hg) was significantly lower than in L-NAME-treated rats (172 +/- 2 mm Hg) but was still higher than in age-matched controls (126 +/- 2 mm Hg). Six weeks of treatment of rats with L-NAME significantly inhibited endothelium-dependent relaxation of the isolated thoracic aorta induced by acetylcholine. The inhibitory effect of L-NAME was entirely reversed by the simultaneous treatment with PETN. The enhancing effect of L-NAME on noradrenaline-induced contraction was antagonised by long-term treatment with PETN. Wall thickness, cross-sectional area and wall/diameter ratio of the thoracic aorta in L-NAME-treated rats were markedly increased. In the L-NAME + PETN-treated rats, the increment of these parameters was significantly lower. The results suggest that PETN administered to rats during development of NO-deficient hypertension prevented functional impairment and at the same time reduced structural changes in the thoracic aorta induced by long-term inhibition of NO synthase.[1]

References

 
WikiGenes - Universities