The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Chemical anoxia of tubular cells induces activation of c-Src and its translocation to the zonula adherens.

Cyanide (CN)-induced chemical anoxia of cultured mouse proximal tubular (MPT) cells increased the kinase activity of c-Src by approximately threefold. 4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), a specific inhibitor of c-Src, prevented Src activation. CN also increased the permeability of MPT cell monolayers, an event ameliorated by PP2. During CN treatment, the proteins of the zonula adherens (ZA; E-cadherin and the catenins) disappeared from their normal location at cell-cell borders and appeared within the cytosol. CN also resulted in the appearance of c-Src at cell-cell borders. PP2 prevented these CN-induced alterations in the distribution of ZA proteins and c-Src. CN also increased the association of c-Src with beta-catenin and p120 and induced a substantial increase in tyrosine phosphorylation of both catenins. PP2 prevented the CN-induced phosphorylation of these catenins. In summary, we show that CN-induced chemical anoxia activates c-Src and induces its translocation to cell-cell junctions where it binds to and phosphorylates beta-catenin and p120. Our findings suggest that these events contribute to the loss of the epithelial barrier function associated with chemical anoxia.[1]

References

  1. Chemical anoxia of tubular cells induces activation of c-Src and its translocation to the zonula adherens. Sinha, D., Wang, Z., Price, V.R., Schwartz, J.H., Lieberthal, W. Am. J. Physiol. Renal Physiol. (2003) [Pubmed]
 
WikiGenes - Universities