The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Dampening of cytosolic Ca2+ oscillations on propagation to nucleus.

Ca(2+) signals may regulate gene expression. The increase of the cytosolic Ca(2+) concentration ([Ca(2+)](c)) promotes activation and/or nuclear import of some transcription factors, but others require the increase of the nuclear Ca(2+) concentration ([Ca(2+)](N)) for activation. Whether the nuclear envelope may act as a diffusion barrier for propagation of [Ca(2+)](c) signals remains controversial. We have studied the spreading of Ca(2+) from the cytosol to the nucleus by comparing the cytosolic and the nuclear Ca(2+) signals reported by targeted aequorins in adrenal chromaffin, PC12, and GH(3) pituitary cells. Strong stimulation of either Ca(2+) entry (by depolarization with high K(+) or acethylcholine) or Ca(2+) release from the intracellular Ca(2+) stores (by stimulation with caffeine, UTP, bradykinin, or thyrotropin-releasing hormone (TRH)) produced similar Ca(2+) signals in cytosol and nucleus. In contrast, both spontaneous and TRH-stimulated oscillations of cytosolic Ca(2+) in single GH(3) cells were considerably dampened during propagation to the nucleus. These results are consistent with the existence of a kinetic barrier that filters high frequency physiological [Ca(2+)](c) oscillations without disturbing sustained [Ca(2+)](c) increases. Thus, encoding of the Ca(2+) signal may allow differential control of Ca(2+)-dependent mechanisms located at either the cytosol or the nucleus.[1]

References

  1. Dampening of cytosolic Ca2+ oscillations on propagation to nucleus. Chamero, P., Villalobos, C., Alonso, M.T., García-Sancho, J. J. Biol. Chem. (2002) [Pubmed]
 
WikiGenes - Universities