The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor.

At excitatory synapses, the postsynaptic scaffolding protein postsynaptic density 95 (PSD-95) couples NMDA receptors (NMDARs) to the Ras GTPase-activating protein SynGAP. The close association of SynGAP and NMDARs suggests that SynGAP may have an important role in NMDAR-dependent activation of Ras signaling pathways, such as the MAP kinase pathway, and in synaptic plasticity. To explore this issue, we examined long-term potentiation (LTP), p42 MAPK (ERK2) signaling, and spatial learning in mice with a heterozygous null mutation of the SynGAP gene (SynGAP(-/+)). In SynGAP(-/+) mutant mice, the induction of LTP in the hippocampal CA1 region was strongly reduced in the absence of any detectable alteration in basal synaptic transmission and NMDAR-mediated synaptic currents. Although basal levels of activated ERK2 were elevated in hippocampal extracts from SynGAP(-/+) mice, NMDAR stimulation still induced a robust increase in ERK activation in slices from SynGAP(-/+) mice. Thus, although SynGAP may regulate the ERK pathway, its role in LTP most likely involves additional downstream targets. Consistent with this, the amount of potentiation induced by stimulation protocols that induce an ERK-independent form of LTP were also significantly reduced in slices from SynGAP(-/+) mice. An elevation of basal phospho-ERK2 levels and LTP deficits were also observed in SynGAP(-/+)/H-Ras(-)/- double mutants, suggesting that SynGAP may normally regulate Ras isoforms other than H-Ras. A comparison of SynGAP and PSD-95 mutants suggests that PSD-95 couples NMDARs to multiple downstream signaling pathways with very different roles in LTP and learning.[1]

References

  1. SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. Komiyama, N.H., Watabe, A.M., Carlisle, H.J., Porter, K., Charlesworth, P., Monti, J., Strathdee, D.J., O'Carroll, C.M., Martin, S.J., Morris, R.G., O'Dell, T.J., Grant, S.G. J. Neurosci. (2002) [Pubmed]
 
WikiGenes - Universities