Membrane topography of human phosphatidylethanolamine N-methyltransferase.
In liver, phosphatidylethanolamine is converted to phosphatidylcholine through a series of three sequential methylation reactions. Phosphatidylethanolamine N-methyltransferase (PEMT) catalyzes each transmethylation reaction, and S-adenosylmethionine is the methyl group donor. Biochemical analysis of human liver revealed that the methyltransferase activity is primarily localized to the endoplasmic reticulum and mitochondria-associated membranes. Bioinformatic analysis of the predicted amino acid sequence suggested that the enzyme adopts a polytopic conformation in those membranes. To elucidate the precise membrane topography of PEMT and thereby provide the basis for in-depth functional characterization of the enzyme, we performed endoproteinase-protection analysis of epitope-tagged, recombinant protein. Our data suggest a topographical model of PEMT in which four transmembrane regions span the membrane such that both the N and C termini of the enzyme are localized external to the ER. Two hydrophilic connecting loops protrude into the luminal space of the microsomes whereas a corresponding loop on the cytosolic side remains proximate to the membrane. Further support for this model was obtained following endoproteinase-protection analysis of mutant recombinant PEMT derivatives in which specific protease cleavage sites had been genetically engineered or ablated.[1]References
- Membrane topography of human phosphatidylethanolamine N-methyltransferase. Shields, D.J., Lehner, R., Agellon, L.B., Vance, D.E. J. Biol. Chem. (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









