The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 
 

Anti-DNA B cells in MRL/lpr mice show altered differentiation and editing pattern.

We have studied the regulation of anti-DNA B cells in transgenic mice with a heavy chain transgene (3H9H/56R). This transgene codes for a heavy chain that forms anti-double-stranded DNA (dsDNA) antibody when paired with most members of the endogenous Vkappa repertoire, but certain L chains, referred to as Vkappa editors, do not sustain dsDNA binding in combination with 3H9H/56R. In the nonautoimmune 3H9H/56R BALB/c, most B cells generated do not bind DNA because the transgene itself is edited or is associated with a Vkappa editor. A minor population of B cells (30%) bind dsDNA and express the lambda1 light chain (known to sustain 3H9H/56R DNA binding). These 3H9/56R/lambda1 B cells coexpress a kappa editor, and we propose that the down-regulation of the anti-DNA BCR caused by the dual L chain expression may prevent activation of this kappa/lambda population. These kappa/lambda B cells are sequestered in the marginal zone. Here, we studied the influence of autoimmunity on expression and regulation of 3H9H/56R. In 3H9H/56R MRL/lpr mice, the expression of anti-dsDNA is vastly accelerated. Anti-dsDNA B cells use noneditor kappas but, in addition, most anti-dsDNA B cells have edited the heavy chain transgene. lambda1 B cells (without the coexpression of a kappa editor) are found and the kappa/lambda1 MZ population is absent. Our results suggest that improper editing and failure to sequester autoreactive B cells may contribute to the breakdown of tolerance in MRL/lpr mice.[1]

References

  1. Anti-DNA B cells in MRL/lpr mice show altered differentiation and editing pattern. Li, Y., Li, H., Ni, D., Weigert, M. J. Exp. Med. (2002) [Pubmed]
 
WikiGenes - Universities