The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Histidine 407, a phantom residue in the E1 subunit of the Escherichia coli pyruvate dehydrogenase complex, activates reductive acetylation of lipoamide on the E2 subunit. An explanation for conservation of active sites between the E1 subunit and transketolase.

Least squares alignment of the E. coli pyruvate dehydrogenase multienzyme complex E1 subunit and yeast transketolase crystal structures indicates a general structural similarity between the two enzymes and provides a plausible location for a short-loop region in the E1 structure that was unobserved due to disorder. The residue H407, located in this region, is shown to be able to penetrate the active site. Suggested by this comparison, the H407A E1 variant was created, and H407 was shown to participate in the reductive acetylation of both an independently expressed lipoyl domain and the intact 1-lipoyl E2 subunit. While the H407A substitution only modestly affected the reaction through pyruvate decarboxylation (ca. 14% activity compared to parental E1), the overall complex has a much impaired activity, at most 0.15% compared to parental E1. Isothermal titration calorimetry measurements show that the binding of the lipoyl domain to the H407A E1 variant is much weaker than that to parental E1. At the same time, mass spectrometric measurements clearly demonstrate much impaired reductive acetylation of the independently expressed lipoyl domain and of the intact 1-lipoyl E2 by the H407A variant compared to the parental E1. A proposal is presented to explain the remarkable conservation of the three-dimensional structure at the active centers of the E. coli E1 subunit and transketolase on the basis of the parallels in the ligation-type reactions carried out and the need to protonate a very weak acid, a dithiolane sulfur atom in the former, and a carbonyl oxygen atom in the latter.[1]

References

 
WikiGenes - Universities