The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

TKL1  -  transketolase TKL1

Saccharomyces cerevisiae S288c

Synonyms: TK 1, Transketolase 1, YP9499.29C, YPR074C
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of TKL1

 

Psychiatry related information on TKL1

 

High impact information on TKL1

 

Chemical compound and disease context of TKL1

 

Biological context of TKL1

 

Anatomical context of TKL1

  • In addition, transketolase, transaldolase, and glucose-6-phosphatase, a known cisternal enzyme, are inactivated by chymotrypsin and subtilisin only in disrupted hepatic microsomes under conditions in which NADPH-cytochrome c reductase, an enzyme on the external surface, is inactivated equally in intact and disrupted microsomes [17].
  • By coupling baker's yeast transketolase with illuminated chromatophore preparations, it was demonstrated that [U-14C]-fructose 6-phosphate (6-P) is oxidatively split to produce glycolate, and that the reaction was markedly inhibited by superoxide dismutase and less strongly by catalase [4].
  • The determination of thiamin pyrophosphate in blood and other tissues, and its correlation with erythrocyte transketolase activity [18].
  • Immunogold electron microscopy on spinach leaf thin sections revealed that about 90% of the total epimerase and transketolase, and 96% of the total chloroplast H+-ATP synthase portion CF1 are associated with thylakoid membranes in situ [19].
 

Associations of TKL1 with chemical compounds

 

Other interactions of TKL1

 

Analytical, diagnostic and therapeutic context of TKL1

References

  1. Revisiting the 13C-label distribution of the non-oxidative branch of the pentose phosphate pathway based upon kinetic and genetic evidence. Kleijn, R.J., van Winden, W.A., van Gulik, W.M., Heijnen, J.J. FEBS J. (2005) [Pubmed]
  2. Localization of reactive tyrosine residues of baker's yeast transketolase. Kovina, M., Viryasov, M., Baratova, L., Kochetov, G. FEBS Lett. (1996) [Pubmed]
  3. Molecular evolutionary analysis of the thiamine-diphosphate-dependent enzyme, transketolase. Schenk, G., Layfield, R., Candy, J.M., Duggleby, R.G., Nixon, P.F. J. Mol. Evol. (1997) [Pubmed]
  4. Enzymic formation of glycolate in Chromatium. Role of superoxide radical in a transketolase-type mechanism. Asami, S., Akazawa, T. Biochemistry (1977) [Pubmed]
  5. The role of cysteine 160 in thiamine diphosphate binding of the Calvin-Benson-Bassham cycle transketolase of Rhodobacter sphaeroides. Bobst, C.E., Tabita, F.R. Arch. Biochem. Biophys. (2004) [Pubmed]
  6. Properties and functions of the thiamin diphosphate dependent enzyme transketolase. Schenk, G., Duggleby, R.G., Nixon, P.F. Int. J. Biochem. Cell Biol. (1998) [Pubmed]
  7. Three-dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5 A resolution. Lindqvist, Y., Schneider, G., Ermler, U., Sundström, M. EMBO J. (1992) [Pubmed]
  8. Snapshot of a key intermediate in enzymatic thiamin catalysis: crystal structure of the alpha-carbanion of (alpha,beta-dihydroxyethyl)-thiamin diphosphate in the active site of transketolase from Saccharomyces cerevisiae. Fiedler, E., Thorell, S., Sandalova, T., Golbik, R., König, S., Schneider, G. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  9. Loss of SOD1 and LYS7 sensitizes Saccharomyces cerevisiae to hydroxyurea and DNA damage agents and downregulates MEC1 pathway effectors. Carter, C.D., Kitchen, L.E., Au, W.C., Babic, C.M., Basrai, M.A. Mol. Cell. Biol. (2005) [Pubmed]
  10. The growth rate-limiting reaction in methanol-assimilating yeasts. Brinkmann, U., Mueller, R.H., Babel, W. FEMS Microbiol. Rev. (1990) [Pubmed]
  11. Histidine 407, a phantom residue in the E1 subunit of the Escherichia coli pyruvate dehydrogenase complex, activates reductive acetylation of lipoamide on the E2 subunit. An explanation for conservation of active sites between the E1 subunit and transketolase. Nemeria, N., Arjunan, P., Brunskill, A., Sheibani, F., Wei, W., Yan, Y., Zhang, S., Jordan, F., Furey, W. Biochemistry (2002) [Pubmed]
  12. Cloning and characterization of a Saccharomyces cerevisiae gene encoding the low molecular weight protein-tyrosine phosphatase. Ostanin, K., Pokalsky, C., Wang, S., Van Etten, R.L. J. Biol. Chem. (1995) [Pubmed]
  13. The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. Slekar, K.H., Kosman, D.J., Culotta, V.C. J. Biol. Chem. (1996) [Pubmed]
  14. TKL2, a second transketolase gene of Saccharomyces cerevisiae. Cloning, sequence and deletion analysis of the gene. Schaaff-Gerstenschläger, I., Mannhaupt, G., Vetter, I., Zimmermann, F.K., Feldmann, H. Eur. J. Biochem. (1993) [Pubmed]
  15. Yeast TKL1 gene encodes a transketolase that is required for efficient glycolysis and biosynthesis of aromatic amino acids. Sundström, M., Lindqvist, Y., Schneider, G., Hellman, U., Ronne, H. J. Biol. Chem. (1993) [Pubmed]
  16. Structure and properties of an engineered transketolase from maize. Gerhardt, S., Echt, S., Busch, M., Freigang, J., Auerbach, G., Bader, G., Martin, W.F., Bacher, A., Huber, R., Fischer, M. Plant Physiol. (2003) [Pubmed]
  17. The pentose phosphate pathway in the endoplasmic reticulum. Bublitz, C., Steavenson, S. J. Biol. Chem. (1988) [Pubmed]
  18. The determination of thiamin pyrophosphate in blood and other tissues, and its correlation with erythrocyte transketolase activity. Warnock, L.G., Prudhomme, C.R., Wagner, C. J. Nutr. (1978) [Pubmed]
  19. Purification, properties and in situ localization of the amphibolic enzymes D-ribulose 5-phosphate 3-epimerase and transketolase from spinach chloroplasts. Teige, M., Melzer, M., Süss, K.H. Eur. J. Biochem. (1998) [Pubmed]
  20. Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes. Bao, X., Gao, D., Qu, Y., Wang, Z., Walfridssion, M., Hahn-Hagerbal, B. Chin. J. Biotechnol. (1997) [Pubmed]
  21. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Juhnke, H., Krems, B., Kötter, P., Entian, K.D. Mol. Gen. Genet. (1996) [Pubmed]
  22. Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Pitkänen, J.P., Rintala, E., Aristidou, A., Ruohonen, L., Penttilä, M. Appl. Microbiol. Biotechnol. (2005) [Pubmed]
  23. Pentose-phosphate pathway in Saccharomyces cerevisiae: analysis of deletion mutants for transketolase, transaldolase, and glucose 6-phosphate dehydrogenase. Schaaff-Gerstenschläger, I., Zimmermann, F.K. Curr. Genet. (1993) [Pubmed]
  24. Examination of substrate binding in thiamin diphosphate-dependent transketolase by protein crystallography and site-directed mutagenesis. Nilsson, U., Meshalkina, L., Lindqvist, Y., Schneider, G. J. Biol. Chem. (1997) [Pubmed]
  25. Examination of donor substrate conversion in yeast transketolase. Fiedler, E., Golbik, R., Schneider, G., Tittmann, K., Neef, H., König, S., Hübner, G. J. Biol. Chem. (2001) [Pubmed]
  26. The affinity chromatography of transketolase. Wood, T., Fletcher, S. Biochim. Biophys. Acta (1978) [Pubmed]
 
WikiGenes - Universities