The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Decarboxylation

  • The results provide an explanation for the presence of GH-secreting tumors in some patients with the multiple endocrine neoplasia syndrome, type I, and warrant the addition of GH-releasing activity to the growing list of hormones secreted by tumors of amine precursor uptake and decarboxylation cell types [1].
  • Disturbance of neuronal activity to release L-DOPA in NTS, loss of the activity in CVLM, enhancement of the activity with decreased decarboxylation and increase in sensitivity to levodopa in RVLM may be involved in maintenance of hypertension in SHR [2].
  • We demonstrate that the N-terminal domain of the Escherichia coli Dfp protein catalyzes the decarboxylation of (R)-4'-phospho-N-pantothenoylcysteine to 4'-phosphopantetheine [3].
  • Macrophomate synthase from the fungus Macrophoma commelinae IFO 9570 is a Mg(II)-dependent dimeric enzyme that catalyzes an extraordinary, complex five-step chemical transformation from 2-pyrone and oxalacetate to benzoate involving decarboxylation, C-C bond formation, and dehydration [4].
  • Malonate semialdehyde decarboxylase (MSAD) has been identified as the protein encoded by the orf130 gene from Pseudomonas pavonaceae 170 on the basis of the genomic context of the gene as well as its ability to catalyze the decarboxylation of malonate semialdehyde to generate acetaldehyde [5].

Psychiatry related information on Decarboxylation


High impact information on Decarboxylation


Chemical compound and disease context of Decarboxylation


Biological context of Decarboxylation


Anatomical context of Decarboxylation

  • Additional specimens were incubated with 3H-5-HTP and carbidopa, an inhibitor of DOPA-decarboxylase, used to block the decarboxylation of 3H-5-HTP to 3H-5-HT, or with 3H-5-HT, used to determine where exogenous 3H-5-HT localizes in the pyloric mucosa [22].
  • Family studies on myeloperoxidase (MPO) deficiency have been carried out by quantitating the peroxidase activity of granulocyte preparations with three methods, namely guaiacol peroxidation, alanine decarboxylation, and spectroscopic analysis [23].
  • It has previously been suggested that, after degeneration of nigrostriatal pathways, decarboxylation of administered L-dopa may occur mainly at such striatal sites as surviving dopaminergic terminals, serotonergic neurons, or capillaries; but currently available data do not favor these hypotheses [24].
  • The 6 patients with typical dopa-responsive dystonia had a modest but significant reduction in the uptake of tracer into both caudate and putamen, which indicates a defect in the decarboxylation, vesicular uptake, and storage of [18F]dopa [25].
  • The substrate phosphatidylserine is synthesized extramitochondrially and must be translocated to the mitochondria prior to decarboxylation [26].

Associations of Decarboxylation with chemical compounds


Gene context of Decarboxylation


Analytical, diagnostic and therapeutic context of Decarboxylation


  1. Partial purification and characterization of a peptide with growth hormone-releasing activity from extrapituitary tumors in patients with acromegaly. Frohman, L.A., Szabo, M., Berelowitz, M., Stachura, M.E. J. Clin. Invest. (1980) [Pubmed]
  2. Neurobiology of L-DOPAergic systems. Misu, Y., Goshima, Y., Ueda, H., Okamura, H. Prog. Neurobiol. (1996) [Pubmed]
  3. Molecular characterization of lantibiotic-synthesizing enzyme EpiD reveals a function for bacterial Dfp proteins in coenzyme A biosynthesis. Kupke, T., Uebele, M., Schmid, D., Jung, G., Blaesse, M., Steinbacher, S. J. Biol. Chem. (2000) [Pubmed]
  4. Detailed reaction mechanism of macrophomate synthase. Extraordinary enzyme catalyzing five-step transformation from 2-pyrones to benzoates. Watanabe, K., Mie, T., Ichihara, A., Oikawa, H., Honma, M. J. Biol. Chem. (2000) [Pubmed]
  5. Mechanistic characterization of a bacterial malonate semialdehyde decarboxylase: identification of a new activity on the tautomerase superfamily. Poelarends, G.J., Johnson, W.H., Murzin, A.G., Whitman, C.P. J. Biol. Chem. (2003) [Pubmed]
  6. Cloning and expression of the malolactic gene of Pediococcus damnosus NCFB1832 in Saccharomyces cerevisiae. Bauer, R., Volschenk, H., Dicks, L.M. J. Biotechnol. (2005) [Pubmed]
  7. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Trewick, S.C., Henshaw, T.F., Hausinger, R.P., Lindahl, T., Sedgwick, B. Nature (2002) [Pubmed]
  8. Synthesis, structure and activity of artificial, rationally designed catalytic polypeptides. Johnsson, K., Allemann, R.K., Widmer, H., Benner, S.A. Nature (1993) [Pubmed]
  9. Conversion of the chemical energy of methylmalonyl-CoA decarboxylation into a Na+ gradient. Hilpert, W., Dimroth, P. Nature (1982) [Pubmed]
  10. Importance of amino acid uptake and decarboxylation in gastrin release from isolated G cells. Lichtenberger, L.M., Delansorne, R., Graziani, L.A. Nature (1982) [Pubmed]
  11. Medium effects in antibody-catalyzed reactions. Lewis, C., Krämer, T., Robinson, S., Hilvert, D. Science (1991) [Pubmed]
  12. C2-alpha-lactylthiamin diphosphate is an intermediate on the pathway of thiamin diphosphate-dependent pyruvate decarboxylation. Evidence on enzymes and models. Zhang, S., Liu, M., Yan, Y., Zhang, Z., Jordan, F. J. Biol. Chem. (2004) [Pubmed]
  13. Identification of bound pyruvate essential for the activity of phosphatidylserine decarboxylase of Escherichia coli. Satre, M., Kennedy, E.P. J. Biol. Chem. (1978) [Pubmed]
  14. Oxidative decarboxylation of UDP-glucuronic acid in extracts of polymyxin-resistant Escherichia coli. Origin of lipid a species modified with 4-amino-4-deoxy-L-arabinose. Breazeale, S.D., Ribeiro, A.A., Raetz, C.R. J. Biol. Chem. (2002) [Pubmed]
  15. Oxalate:formate exchange. The basis for energy coupling in Oxalobacter. Anantharam, V., Allison, M.J., Maloney, P.C. J. Biol. Chem. (1989) [Pubmed]
  16. CloR, a bifunctional non-heme iron oxygenase involved in clorobiocin biosynthesis. Pojer, F., Kahlich, R., Kammerer, B., Li, S.M., Heide, L. J. Biol. Chem. (2003) [Pubmed]
  17. Glutathione, cell proliferation, and 1,3-bis-(2-chloroethyl)-1-nitrosourea in K562 leukemia. Frischer, H., Kennedy, E.J., Chigurupati, R., Sivarajan, M. J. Clin. Invest. (1993) [Pubmed]
  18. Maple syrup urine disease in Mennonites. Evidence that the Y393N mutation in E1 alpha impedes assembly of the E1 component of branched-chain alpha-keto acid dehydrogenase complex. Fisher, C.R., Chuang, J.L., Cox, R.P., Fisher, C.W., Star, R.A., Chuang, D.T. J. Clin. Invest. (1991) [Pubmed]
  19. Molecular architecture and mechanism of an icosahedral pyruvate dehydrogenase complex: a multifunctional catalytic machine. Milne, J.L., Shi, D., Rosenthal, P.B., Sunshine, J.S., Domingo, G.J., Wu, X., Brooks, B.R., Perham, R.N., Henderson, R., Subramaniam, S. EMBO J. (2002) [Pubmed]
  20. Characterization of the iron- and 2-oxoglutarate-binding sites of human prolyl 4-hydroxylase. Myllyharju, J., Kivirikko, K.I. EMBO J. (1997) [Pubmed]
  21. Aminomalonic acid: identification in Escherichia coli and atherosclerotic plaque. Van Buskirk, J.J., Kirsch, W.M., Kleyer, D.L., Barkley, R.M., Koch, T.H. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  22. An electron microscopic radioautographic identification of the APUD endocrine cells in the rat gastric pyloric glands. Rubin, W., Schwartz, B. Gastroenterology (1981) [Pubmed]
  23. New approaches to the detection of myeloperoxidase deficiency. Dri, P., Cramer, R., Soranzo, M.R., Comin, A., Miotti, V., Patriarca, P. Blood (1982) [Pubmed]
  24. Nonaminergic striatal neurons convert exogenous L-dopa to dopamine in parkinsonism. Melamed, E., Hefti, F., Wurtman, R.J. Ann. Neurol. (1980) [Pubmed]
  25. Dopa-responsive dystonia: [18F]dopa positron emission tomography. Sawle, G.V., Leenders, K.L., Brooks, D.J., Harwood, G., Lees, A.J., Frackowiak, R.S., Marsden, C.D. Ann. Neurol. (1991) [Pubmed]
  26. Phosphatidylserine decarboxylase from Saccharomyces cerevisiae. Isolation of mutants, cloning of the gene, and creation of a null allele. Trotter, P.J., Pedretti, J., Voelker, D.R. J. Biol. Chem. (1993) [Pubmed]
  27. Regulation of leucine metabolism in man: a stable isotope study. Matthews, D.E., Bier, D.M., Rennie, M.J., Edwards, R.H., Halliday, D., Millward, D.J., Clugston, G.A. Science (1981) [Pubmed]
  28. 1,25-dihydroxycholecalciferol and parathormone: effects on isolated osteoclast-like and osteoblast-like cells. Wong, G.L., Luben, R.A., Cohn, D.V. Science (1977) [Pubmed]
  29. Chemical evolution from hydrogen cyanide: photochemical decarboxylation of orotic acid and orotate derivatives. Ferris, J.P., Joshi, P.C. Science (1978) [Pubmed]
  30. The selective eosinophil chemotactic activity of histamine. Clark, R.A., Gallin, J.I., Kaplan, A.P. J. Exp. Med. (1975) [Pubmed]
  31. Effect of protein ingestion on urinary dopamine excretion. Evidence for the functional importance of renal decarboxylation of circulating 3,4-dihydroxyphenylalanine in man. Williams, M., Young, J.B., Rosa, R.M., Gunn, S., Epstein, F.H., Landsberg, L. J. Clin. Invest. (1986) [Pubmed]
  32. Genetic regulation of malic enzyme activity in the mouse. Coleman, D.L., Kuzava, J.E. J. Biol. Chem. (1991) [Pubmed]
  33. The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. Dickinson, J.R., Salgado, L.E., Hewlins, M.J. J. Biol. Chem. (2003) [Pubmed]
  34. The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. De Biase, D., Tramonti, A., Bossa, F., Visca, P. Mol. Microbiol. (1999) [Pubmed]
  35. Mechanism of action of dopaminergic agents in Parkinson's disease. Koller, W.C., Rueda, M.G. Neurology (1998) [Pubmed]
  36. Serine regulates phosphatidylethanolamine biosynthesis in the hamster heart. McMaster, C.R., Choy, P.C. J. Biol. Chem. (1992) [Pubmed]
  37. Pre-steady-state kinetic analysis of the reactions of alternate substrates with dialkylglycine decarboxylase. Sun, S., Bagdassarian, C.K., Toney, M.D. Biochemistry (1998) [Pubmed]
  38. Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. Jez, J.M., Ferrer, J.L., Bowman, M.E., Dixon, R.A., Noel, J.P. Biochemistry (2000) [Pubmed]
  39. Alpha-keto acid chain elongation reactions involved in the biosynthesis of coenzyme B (7-mercaptoheptanoyl threonine phosphate) in methanogenic Archaea. Howell, D.M., Harich, K., Xu, H., White, R.H. Biochemistry (1998) [Pubmed]
  40. Ethanolamine glycerophospholipid formation by decarboxylation of serine glycerophospholipids in myelinating organ cultures of cerebellum. Bradbury, K. J. Neurochem. (1984) [Pubmed]
WikiGenes - Universities