The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Synthesis of 3-tert-butylcatechol by an engineered monooxygenase.

Recombinant Escherichia coli JM101 was used for the in vivo biocatalytic synthesis of 3-tert-butyl- catechol. The bacterial strain synthesized the laboratory-evolved variant HbpA(T2) of 2-hydroxybiphenyl 3-monooxygenase (HbpA, EC 1.14.13.44) from Pseudomonas azelaica HBP1. The mutant enzyme HbpA(T2) is able to hydroxylate 2-tert-butylphenol to the corresponding catechol, a reaction that is not catalyzed by the wild-type enzyme. The biotransformation was performed in a 3-L bioreactor for 24 h. To mitigate the toxicity of the 2-tert-butylphenol starting material, we applied a limited substrate feed. Continuous in situ product removal with the hydrophobic resin Amberlite XAD-4 was used to separate the product from culture broth. In addition, binding to the resin stabilized the product, which was important because 3-tert-butylcatechol is very labile in aqueous solution. The productivity of the process was 63 mg L(-1) h(-1) so that after 24 h, 3.0 g of 3-tert-butylcatechol were isolated. Down-stream processing consisted of two steps. First, bound 2-tert-butylphenol and 3-tert-butylcatechol were eluted from Amberlite XAD-4 with methanol. Second, the two compounds were separated over neutral aluminum oxide, which selectively binds the produced catechol but not the phenol substrate. The final purity of 3-tert-butylcatechol was greater than 98%.[1]

References

  1. Synthesis of 3-tert-butylcatechol by an engineered monooxygenase. Meyer, A., Held, M., Schmid, A., Kohler, H.P., Witholt, B. Biotechnol. Bioeng. (2003) [Pubmed]
 
WikiGenes - Universities