The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Nitrogen-source regulation of yeast gamma-glutamyl transpeptidase synthesis involves the regulatory network including the GATA zinc-finger factors Gln3, Nil1/Gat1 and Gzf3.

In Saccharomyces cerevisiae, the CIS2 gene encodes gamma-glutamyl transpeptidase (gamma-GT; EC, the main GSH-degrading enzyme. The promoter region of CIS2 contains one stress-response element (CCCCT) and eight GAT(T/A)A core sequences, probably involved in nitrogen-regulated transcription. We show in the present study that expression of CIS2 is indeed regulated according to the nature of the nitrogen source. Expression is highest in cells growing on a poor nitrogen source such as urea. Under these conditions, the GATA zinc-finger transcription factors Nil1 and Gln3 are both required for CIS2 expression, Nil1 appearing as the more important factor. We further show that Gzf3, another GATA zinc-finger protein, acts as a negative regulator in nitrogen-source control of CIS2 expression. During growth on a preferred nitrogen source like NH(4)(+), CIS2 expression is repressed through a mechanism involving (at least) the Gln3- binding protein Ure2/GdhCR. Induction of CIS2 expression during nitrogen starvation is dependent on Gln3 and Nil1. Furthermore, rapamycin causes similar CIS2 activation, indicating that the target of rapamycin signalling pathway controls CIS2 expression via Gln3 and Nil1 in nitrogen-starved cells. Finally, our results show that CIS2 expression is induced mainly by nitrogen starvation but apparently not by other types of stress.[1]


WikiGenes - Universities