Interaction between dental metals and antioxidants, assessed by cytotoxicity assay and ESR spectroscopy.
Among dental metals, copper showed the highest cytotoxicity against human oral squamous cell carcinoma and human submandibular gland carcinoma cells, followed by palladium-alloy, gold and silver. Normal human cells (gingival fibroblast, pulp cells, periodontal ligament fibroblast) were relatively resistant to these metals. The palladium-alloy failed to induce internucleosomal DNA fragmentation, a biochemical hallmark of apoptosis, in human promyelocytic leukemic HL-60 cells. The cytotoxic activity of the palladium-alloy was significantly reduced by a non-cytotoxic concentration of N-acetyl-L-cysteine, or more efficiently by sodium ascorbate. However, higher concentrations of sodium ascorbate enhanced the cytotoxic activity of palladium-alloy. ESR spectroscopy showed that the palladium-alloy enhanced the intensity of ascorbate radical, suggesting the possible interaction between metals and antioxidants. All metals, except copper, did not significantly affect the generation of superoxide anion (by hypoxanthine-xanthine oxidase reaction), hydroxyl radical (by Fenton reaction) and nitric oxide (from NOC-7 in the presence of C-PTIO). These data demonstrate for the first time that antioxidants modify the biological activity of dental metals.[1]References
- Interaction between dental metals and antioxidants, assessed by cytotoxicity assay and ESR spectroscopy. Kinoshita, N., Yamamura, T., Teranuma, H., Katayama, T., Tamanyu, M., Negoro, T., Satoh, K., Sakagami, H. Anticancer Res. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg