The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Lymphotoxin beta receptor induces sequential activation of distinct NF-kappa B factors via separate signaling pathways.

Lymphotoxin beta receptor (LTbetaR)- induced activation of NF-kappaB in mouse embryo fibroblasts was mediated by the classical pathway and by an alternative or second pathway. The classical pathway involved the IkappaB kinase (IKK)beta- and IKKgamma-dependent degradation of IkappaBalpha and resulted in the rapid but transient activation of primarily RelA-containing NF-kappaB dimers. The alternative or second pathway proceeded via NF-kappaB-inducing kinase (NIK)-, IKKalpha-, and protein synthesis-dependent processing of the inhibitory NF-kappaB2 p100 precursor protein to the p52 form and resulted in a delayed but sustained activation of primarily RelB-containing NF-kappaB dimers. This second pathway was independent of the classical IKK complex, which is governed by its central IKKgamma regulatory subunit. The sequential engagement of two distinct pathways, coupled with the negative feedback inhibition of RelA complexes by NF-kappaB- induced resynthesis of IkappaBalpha, resulted in a pronounced temporal change in the nature of the NF-kappaB activity during the course of stimulation. Initially dominant RelA complexes were replaced with time by RelB complexes. Therefore, the alternative activation path mediated by processing of p100 was necessary for sustained NF-kappaB activity in mouse embryo fibroblasts in response to LTbetaR stimulation. Based on the phenotype of mice deficient in various components of the LTbetaR- induced activation of p100 processing, we conclude that this pathway is critically involved in the function of stromal cells during the generation of secondary lymphoid organ microarchitectures.[1]

References

 
WikiGenes - Universities