The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Nfkb2  -  nuclear factor of kappa light polypeptide...

Mus musculus

Synonyms: DNA-binding factor KBF2, NF kappaB2, NF-kappaB2, Nuclear factor NF-kappa-B p100 subunit, Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Nfkb2

 

High impact information on Nfkb2

 

Biological context of Nfkb2

 

Anatomical context of Nfkb2

 

Associations of Nfkb2 with chemical compounds

  • Proliferation of NF-kappa B2-deficient B cells was moderately reduced in response to lipopolysaccharide, anti-IgD-dextran, and CD40, but maturation and immunoglobulin switching were normal [17].
  • HAT inhibitors suppressed LPS-induced p52 binding and acetylation to an extent similar to melatonin, and melatonin did not potentiate the effect of HAT inhibitors [18].
  • We further demonstrate that expression of functional RelB, but not of serine 368 mutants, severely reduces p52 generation and strongly increases expression of the p52 precursor, p100 [19].
  • Consistent with these findings, expression of BMP-2 mRNA was significantly reduced in growth plate chondrocytes in NF-kappaB p50/p52 dKO mice, which associated with decreased numbers of 5-bromo-2'-deoxyuridine (BrdUrd)-positive cells in the proliferating zone of growth plate in these mice [20].
  • Three out of its five members, i.e. p50, p52, and RelB, were similarly activated upon DNFB stimulation, with subsequent translocation of these subunits from the cytosol to the nucleus, but with different kinetics [21].
 

Physical interactions of Nfkb2

 

Regulatory relationships of Nfkb2

 

Other interactions of Nfkb2

  • RESULTS: Macroscopic inspection showed a reduced number and size of PP in Bcl-3(-/-) and NF-kappaB1(-/-) mice but failed to detect PP in NF-kappaB2(-/-) mice [10].
  • Essential role of IkappaB kinase alpha in the constitutive processing of NF-kappaB2 p100 [24].
  • RelB/p52 complexes induced cyclin D1 and c-myc promoter activities and failed in electrophoretic mobility shift assay to interact with IkappaB-alpha-glutathione S-transferase, indicating that their weak interaction with IkappaB-alpha can account for the observed recovery of mammary gland development [15].
  • A BAFF-specific receptor (BAFF-R; BR3) appears to mediate these functions via activation of the NF-kappaB2 pathway [25].
  • Differential translational initiation of the Tpl2 mRNA gives rise to 58-kDa (p58) and 52-kDa (p52) isoforms [26].
 

Analytical, diagnostic and therapeutic context of Nfkb2

  • To assess the role of the precursor in vivo, we generated, by gene targeting, mice lacking p100 but still containing a functional p52 protein [2].
  • Here, ligation of CD40 on transfected 293 cells is shown to trigger p52 production by stimulating p100 ubiquitylation and subsequent proteasome-mediated proteolysis [27].
  • Immunoblotting experiments demonstrated elevated phosphorylation of p52 Src-homology/collagen (SHC) in the ductal network as well, substantiating the activation of this pathway [28].

References

  1. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Iotsova, V., Caamaño, J., Loy, J., Yang, Y., Lewin, A., Bravo, R. Nat. Med. (1997) [Pubmed]
  2. Gastric hyperplasia and increased proliferative responses of lymphocytes in mice lacking the COOH-terminal ankyrin domain of NF-kappaB2. Ishikawa, H., Carrasco, D., Claudio, E., Ryseck, R.P., Bravo, R. J. Exp. Med. (1997) [Pubmed]
  3. IkappaB kinase subunits alpha and gamma are required for activation of NF-kappaB and induction of apoptosis by mammalian reovirus. Hansberger, M.W., Campbell, J.A., Danthi, P., Arrate, P., Pennington, K.N., Marcu, K.B., Ballard, D.W., Dermody, T.S. J. Virol. (2007) [Pubmed]
  4. NF-kappa B2 is required for optimal CD40-induced IL-12 production but dispensable for Th1 cell Differentiation. Speirs, K., Caamano, J., Goldschmidt, M.H., Hunter, C.A., Scott, P. J. Immunol. (2002) [Pubmed]
  5. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Senftleben, U., Cao, Y., Xiao, G., Greten, F.R., Krähn, G., Bonizzi, G., Chen, Y., Hu, Y., Fong, A., Sun, S.C., Karin, M. Science (2001) [Pubmed]
  6. Requirement for NF-kappaB in osteoclast and B-cell development. Franzoso, G., Carlson, L., Xing, L., Poljak, L., Shores, E.W., Brown, K.D., Leonardi, A., Tran, T., Boyce, B.F., Siebenlist, U. Genes Dev. (1997) [Pubmed]
  7. Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Lesley, R., Xu, Y., Kalled, S.L., Hess, D.M., Schwab, S.R., Shu, H.B., Cyster, J.G. Immunity (2004) [Pubmed]
  8. BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2. Kayagaki, N., Yan, M., Seshasayee, D., Wang, H., Lee, W., French, D.M., Grewal, I.S., Cochran, A.G., Gordon, N.C., Yin, J., Starovasnik, M.A., Dixit, V.M. Immunity (2002) [Pubmed]
  9. ABIN-2 is required for optimal activation of Erk MAP kinase in innate immune responses. Papoutsopoulou, S., Symons, A., Tharmalingham, T., Belich, M.P., Kaiser, F., Kioussis, D., O'Garra, A., Tybulewicz, V., Ley, S.C. Nat. Immunol. (2006) [Pubmed]
  10. Abnormal organogenesis of Peyer's patches in mice deficient for NF-kappaB1, NF-kappaB2, and Bcl-3. Paxian, S., Merkle, H., Riemann, M., Wilda, M., Adler, G., Hameister, H., Liptay, S., Pfeffer, K., Schmid, R.M. Gastroenterology (2002) [Pubmed]
  11. Coordination between NF-kappaB family members p50 and p52 is essential for mediating LTbetaR signals in the development and organization of secondary lymphoid tissues. Lo, J.C., Basak, S., James, E.S., Quiambo, R.S., Kinsella, M.C., Alegre, M.L., Weih, F., Franzoso, G., Hoffmann, A., Fu, Y.X. Blood (2006) [Pubmed]
  12. Unique CD40-mediated biological program in B cell activation requires both type 1 and type 2 NF-kappaB activation pathways. Zarnegar, B., He, J.Q., Oganesyan, G., Hoffmann, A., Baltimore, D., Cheng, G. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  13. Mouse mammary tumor virus c-rel transgenic mice develop mammary tumors. Romieu-Mourez, R., Kim, D.W., Shin, S.M., Demicco, E.G., Landesman-Bollag, E., Seldin, D.C., Cardiff, R.D., Sonenshein, G.E. Mol. Cell. Biol. (2003) [Pubmed]
  14. Akt regulates basal and induced processing of NF-kappaB2 (p100) to p52. Gustin, J.A., Korgaonkar, C.K., Pincheira, R., Li, Q., Donner, D.B. J. Biol. Chem. (2006) [Pubmed]
  15. RelB/p52 NF-kappaB complexes rescue an early delay in mammary gland development in transgenic mice with targeted superrepressor IkappaB-alpha expression and promote carcinogenesis of the mammary gland. Demicco, E.G., Kavanagh, K.T., Romieu-Mourez, R., Wang, X., Shin, S.R., Landesman-Bollag, E., Seldin, D.C., Sonenshein, G.E. Mol. Cell. Biol. (2005) [Pubmed]
  16. Trophoblast giant cells express NF-kappa B2 during early mouse development. Muggia, A., Teesalu, T., Neri, A., Blasi, F., Talarico, D. Dev. Genet. (1999) [Pubmed]
  17. Nuclear factor (NF)-kappa B2 (p100/p52) is required for normal splenic microarchitecture and B cell-mediated immune responses. Caamaño, J.H., Rizzo, C.A., Durham, S.K., Barton, D.S., Raventós-Suárez, C., Snapper, C.M., Bravo, R. J. Exp. Med. (1998) [Pubmed]
  18. Melatonin suppresses macrophage cyclooxygenase-2 and inducible nitric oxide synthase expression by inhibiting p52 acetylation and binding. Deng, W.G., Tang, S.T., Tseng, H.P., Wu, K.K. Blood (2006) [Pubmed]
  19. Critical role of RelB serine 368 for dimerization and p100 stabilization. Maier, H.J., Marienfeld, R., Wirth, T., Baumann, B. J. Biol. Chem. (2003) [Pubmed]
  20. NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro. Feng, J.Q., Xing, L., Zhang, J.H., Zhao, M., Horn, D., Chan, J., Boyce, B.F., Harris, S.E., Mundy, G.R., Chen, D. J. Biol. Chem. (2003) [Pubmed]
  21. Differential activation of nuclear factor kappa B subunits in a skin dendritic cell line in response to the strong sensitizer 2,4-dinitrofluorobenzene. Cruz, M.T., Duarte, C.B., Gonçalo, M., Figueiredo, A., Carvalho, A.P., Lopes, M.C. Arch. Dermatol. Res. (2002) [Pubmed]
  22. Constitutive expression of Bc1-3 in thymocytes increases the DNA binding of NF-kappaB1 (p50) homodimers in vivo. Caamaño, J.H., Perez, P., Lira, S.A., Bravo, R. Mol. Cell. Biol. (1996) [Pubmed]
  23. TWEAK induces NF-kappaB2 p100 processing and long lasting NF-kappaB activation. Saitoh, T., Nakayama, M., Nakano, H., Yagita, H., Yamamoto, N., Yamaoka, S. J. Biol. Chem. (2003) [Pubmed]
  24. Essential role of IkappaB kinase alpha in the constitutive processing of NF-kappaB2 p100. Qing, G., Xiao, G. J. Biol. Chem. (2005) [Pubmed]
  25. B cells expressing Bcl-2 and a signaling-impaired BAFF-specific receptor fail to mature and are deficient in the formation of lymphoid follicles and germinal centers. Rahman, Z.S., Manser, T. J. Immunol. (2004) [Pubmed]
  26. Phosphorylation at Thr-290 regulates Tpl2 binding to NF-kappaB1/p105 and Tpl2 activation and degradation by lipopolysaccharide. Cho, J., Tsichlis, P.N. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  27. CD40 regulates the processing of NF-kappaB2 p100 to p52. Coope, H.J., Atkinson, P.G., Huhse, B., Belich, M., Janzen, J., Holman, M.J., Klaus, G.G., Johnston, L.H., Ley, S.C. EMBO J. (2002) [Pubmed]
  28. Growth factor-induced signaling of the pancreatic epithelium. Kayali, A.G., Stotland, A., Gunst, K.V., Kritzik, M., Liu, G., Dabernat, S., Zhang, Y.Q., Wu, W., Sarvetnick, N. J. Endocrinol. (2005) [Pubmed]
 
WikiGenes - Universities