The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Stromal Cells

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Stromal Cells

 

High impact information on Stromal Cells

  • Here we demonstrate that forced expression of Ret in mice deficient for both Rara and Rarb2 (Rara(-/-)Rarb2(-/-)) genetically rescues renal development, restoring ureteric bud growth and stromal cell patterning [6].
  • In the second part of the loop, ureteric bud signals dependent on Ret control stromal cell patterning [6].
  • Para-aortic splanchnopleural (P-Sp) explant cultures on stromal cells (P-Sp culture) did not generate definitive hematopoietic cells and showed defective angiogenesis in the AML1 null embryo [7].
  • Here we show that when cultured on stromal cells genetically engineered to secrete HOXB4, human long-term culture-initiating cells (LTC-ICs) and nonobese diabetic-severe combined immunodeficiency (NOD-SCID) mouse repopulating cells (SRCs) were expanded by more than 20- and 2.5-fold, respectively, over their input numbers [8].
  • TNF-alpha could influence tumor and stromal cells during tumor development [9].
 

Chemical compound and disease context of Stromal Cells

 

Biological context of Stromal Cells

 

Anatomical context of Stromal Cells

 

Associations of Stromal Cells with chemical compounds

 

Gene context of Stromal Cells

  • The chemokine transporter function of CXCR4 was a characteristic of endothelial and stromal cells but not of hematopoietic cells [29].
  • Importantly, the c-Met ligand HGF/SF is produced at high levels by tonsillar stromal cells thus providing signals for the regulation of adhesion and migration within the lymphoid microenvironment [30].
  • Here, it is shown that IL-15 mRNA is mainly expressed in thymic epithelial stromal cells, whereas IL-2 mRNA is exclusively expressed in thymocytes [31].
  • Here, we address this issue by culturing subsets of CD4 CD8 double negative (DN) thymocytes on control stromal cells or stromal cells expressing Delta-like 1 (Dll1) [32].
  • Lymphotoxin alpha/beta and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen [33].
 

Analytical, diagnostic and therapeutic context of Stromal Cells

References

  1. Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. St John, M.A., Tao, W., Fei, X., Fukumoto, R., Carcangiu, M.L., Brownstein, D.G., Parlow, A.F., McGrath, J., Xu, T. Nat. Genet. (1999) [Pubmed]
  2. Semaphorin 3F, a chemorepulsant for endothelial cells, induces a poorly vascularized, encapsulated, nonmetastatic tumor phenotype. Bielenberg, D.R., Hida, Y., Shimizu, A., Kaipainen, A., Kreuter, M., Kim, C.C., Klagsbrun, M. J. Clin. Invest. (2004) [Pubmed]
  3. Growth regulation of prostatic stromal cells by prostate-specific antigen. Sutkowski, D.M., Goode, R.L., Baniel, J., Teater, C., Cohen, P., McNulty, A.M., Hsiung, H.M., Becker, G.W., Neubauer, B.L. J. Natl. Cancer Inst. (1999) [Pubmed]
  4. M-CSF neutralization and egr-1 deficiency prevent ovariectomy-induced bone loss. Cenci, S., Weitzmann, M.N., Gentile, M.A., Aisa, M.C., Pacifici, R. J. Clin. Invest. (2000) [Pubmed]
  5. Response of simian virus 40 (SV40)-transformed, cultured human marrow stromal cells to hematopoietic growth factors. Nemunaitis, J., Andrews, D.F., Crittenden, C., Kaushansky, K., Singer, J.W. J. Clin. Invest. (1989) [Pubmed]
  6. Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Batourina, E., Gim, S., Bello, N., Shy, M., Clagett-Dame, M., Srinivas, S., Costantini, F., Mendelsohn, C. Nat. Genet. (2001) [Pubmed]
  7. A role for hematopoietic stem cells in promoting angiogenesis. Takakura, N., Watanabe, T., Suenobu, S., Yamada, Y., Noda, T., Ito, Y., Satake, M., Suda, T. Cell (2000) [Pubmed]
  8. Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HOXB4 homeoprotein. Amsellem, S., Pflumio, F., Bardinet, D., Izac, B., Charneau, P., Romeo, P.H., Dubart-Kupperschmitt, A., Fichelson, S. Nat. Med. (2003) [Pubmed]
  9. Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Moore, R.J., Owens, D.M., Stamp, G., Arnott, C., Burke, F., East, N., Holdsworth, H., Turner, L., Rollins, B., Pasparakis, M., Kollias, G., Balkwill, F. Nat. Med. (1999) [Pubmed]
  10. Transforming growth factor beta: potential autocrine growth inhibitor of estrogen receptor-negative human breast cancer cells. Arteaga, C.L., Tandon, A.K., Von Hoff, D.D., Osborne, C.K. Cancer Res. (1988) [Pubmed]
  11. Development of an androgen receptor-null model for identifying the initiation site for androgen stimulation of proliferation and suppression of programmed (apoptotic) death of PC-82 human prostate cancer cells. Gao, J., Isaacs, J.T. Cancer Res. (1998) [Pubmed]
  12. Tumor-stromal interaction through the estrogen-signaling pathway in human breast cancer. Yamaguchi, Y., Takei, H., Suemasu, K., Kobayashi, Y., Kurosumi, M., Harada, N., Hayashi, S. Cancer Res. (2005) [Pubmed]
  13. Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Ackerstaff, E., Pflug, B.R., Nelson, J.B., Bhujwalla, Z.M. Cancer Res. (2001) [Pubmed]
  14. Thrombospondin and other possible related matrix proteins in malignant and benign breast disease. An immunohistochemical study. Wong, S.Y., Purdie, A.T., Han, P. Am. J. Pathol. (1992) [Pubmed]
  15. Apoptosis of T cells mediated by galectin-1. Perillo, N.L., Pace, K.E., Seilhamer, J.J., Baum, L.G. Nature (1995) [Pubmed]
  16. Vanin-1, a novel GPI-linked perivascular molecule involved in thymus homing. Aurrand-Lions, M., Galland, F., Bazin, H., Zakharyev, V.M., Imhof, B.A., Naquet, P. Immunity (1996) [Pubmed]
  17. Mesenchymal stem cells in perichondrium express activated leukocyte cell adhesion molecule and participate in bone marrow formation. Arai, F., Ohneda, O., Miyamoto, T., Zhang, X.Q., Suda, T. J. Exp. Med. (2002) [Pubmed]
  18. An in vitro model for cyclosporin A-induced interference of intrathymic clonal elimination. Kosaka, H., Matsubara, H., Sogoh, S., Ogata, M., Hamaoka, T., Fujiwara, H. J. Exp. Med. (1990) [Pubmed]
  19. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T., Martin, T.J. Endocr. Rev. (1999) [Pubmed]
  20. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Nakano, T., Kodama, H., Honjo, T. Science (1994) [Pubmed]
  21. Lymphohematopoietic progenitors immortalized by a retroviral vector harboring a dominant-negative retinoic acid receptor can recapitulate lymphoid, myeloid, and erythroid development. Tsai, S., Bartelmez, S., Sitnicka, E., Collins, S. Genes Dev. (1994) [Pubmed]
  22. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Tokoyoda, K., Egawa, T., Sugiyama, T., Choi, B.I., Nagasawa, T. Immunity (2004) [Pubmed]
  23. T cell development in culture. Lehar, S.M., Bevan, M.J. Immunity (2002) [Pubmed]
  24. An essential role of cytosolic phospholipase A2alpha in prostaglandin E2-mediated bone resorption associated with inflammation. Miyaura, C., Inada, M., Matsumoto, C., Ohshiba, T., Uozumi, N., Shimizu, T., Ito, A. J. Exp. Med. (2003) [Pubmed]
  25. Stepwise progression of B lineage differentiation supported by interleukin 7 and other stromal cell molecules. Hayashi, S., Kunisada, T., Ogawa, M., Sudo, T., Kodama, H., Suda, T., Nishikawa, S., Nishikawa, S. J. Exp. Med. (1990) [Pubmed]
  26. Identification of a 107-kD glycoprotein that mediates adhesion between stromal cells and hematolymphoid cells. Kina, T., Majumdar, A.S., Heimfeld, S., Kaneshima, H., Holzmann, B., Katsura, Y., Weissman, I.L. J. Exp. Med. (1991) [Pubmed]
  27. Different stromal cell lines support lineage-selective differentiation of the multipotential bone marrow stem cell clone LyD9. Lee, K.H., Kinashi, T., Tohyama, K., Tashiro, K., Funato, N., Hama, K., Honjo, T. J. Exp. Med. (1991) [Pubmed]
  28. The generation of natural killer (NK) cells from NK precursor cells in rat long-term bone marrow cultures. van den Brink, M.R., Boggs, S.S., Herberman, R.B., Hiserodt, J.C. J. Exp. Med. (1990) [Pubmed]
  29. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Dar, A., Goichberg, P., Shinder, V., Kalinkovich, A., Kollet, O., Netzer, N., Margalit, R., Zsak, M., Nagler, A., Hardan, I., Resnick, I., Rot, A., Lapidot, T. Nat. Immunol. (2005) [Pubmed]
  30. Paracrine regulation of germinal center B cell adhesion through the c-met-hepatocyte growth factor/scatter factor pathway. van der Voort, R., Taher, T.E., Keehnen, R.M., Smit, L., Groenink, M., Pals, S.T. J. Exp. Med. (1997) [Pubmed]
  31. Differential effects of interleukin-15 and interleukin-2 on differentiation of bipotential T/natural killer progenitor cells. Leclercq, G., Debacker, V., de Smedt, M., Plum, J. J. Exp. Med. (1996) [Pubmed]
  32. Maintenance of T cell specification and differentiation requires recurrent notch receptor-ligand interactions. Schmitt, T.M., Ciofani, M., Petrie, H.T., Zúñiga-Pflücker, J.C. J. Exp. Med. (2004) [Pubmed]
  33. Lymphotoxin alpha/beta and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. Ngo, V.N., Korner, H., Gunn, M.D., Schmidt, K.N., Riminton, D.S., Cooper, M.D., Browning, J.L., Sedgwick, J.D., Cyster, J.G. J. Exp. Med. (1999) [Pubmed]
  34. Bone marrow stromal cells mediate androgenic suppression of B lymphocyte development. Olsen, N.J., Gu, X., Kovacs, W.J. J. Clin. Invest. (2001) [Pubmed]
  35. Novel production of interleukin-1 receptor antagonist peptides in normal human cornea. Kennedy, M.C., Rosenbaum, J.T., Brown, J., Planck, S.R., Huang, X., Armstrong, C.A., Ansel, J.C. J. Clin. Invest. (1995) [Pubmed]
  36. Induction of antitumor immunity by interleukin-2 gene-transduced mouse mammary tumor cells versus transduced mammary stromal fibroblasts. Tsai, S.C., Gansbacher, B., Tait, L., Miller, F.R., Heppner, G.H. J. Natl. Cancer Inst. (1993) [Pubmed]
  37. Progesterone-dependent expression of keratinocyte growth factor mRNA in stromal cells of the primate endometrium: keratinocyte growth factor as a progestomedin. Koji, T., Chedid, M., Rubin, J.S., Slayden, O.D., Csaky, K.G., Aaronson, S.A., Brenner, R.M. J. Cell Biol. (1994) [Pubmed]
 
WikiGenes - Universities