The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Compensatory bone formation in young and old rats during tooth movement.

The aim of this study was to investigate compensatory lingual alveolar bone formation during tooth movement in young and old rats, using the vital bone marker tetracycline. Wistar male rats were separated into the following groups: 13-week-old rats without appliances (13C: control, n = 5), 60-week-old rats without appliances (60C: control, n = 5), 13-week-old rats with appliances (13E: experimental, n = 10), and 60-week-old rats with appliances (60E: experimental, n = 10). The upper first molars of the 13E and 60E groups were moved lingually using fixed appliances. On the third day of tooth movement, tetracycline (TC) was intra-peritoneally injected in all animals including the controls. On the 21st day of tooth movement, the animals were killed and unfixed, and undecalcified, 5-microm frozen frontal sections of the rat first molar areas in both control and experimental groups were examined under light and fluorescent microscopes. In the 13C group without tooth movement, tetracycline labelling lines were obvious in the alveolar crest, apical areas, and interradicular septum, indicating vertical alveolar bone growth. However, in the 60C control group, tetracycline labelling was almost undetectable throughout the alveolar bone. Although the lingual alveolar crest was resorbed from the periodontal side after lingual tooth movement, the sharp, bright labelling lines were still present from the crest to the lingual periosteal alveolar bone in the 13E group. In the 60E group the lines appeared in the lingual periosteal alveolar bone containing the crest, indicating considerable new bone formation. The results indicate that compensatory bone formation occurs in the alveolar crest area and, consequently, alveolar bone height is maintained, even in aged rats.[1]


  1. Compensatory bone formation in young and old rats during tooth movement. Shimpo, S., Horiguchi, Y., Nakamura, Y., Lee, M., Oikawa, T., Noda, K., Kuwahara, Y., Kawasaki, K. European journal of orthodontics. (2003) [Pubmed]
WikiGenes - Universities