The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Bone Development

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Bone Development


Psychiatry related information on Bone Development

  • This study examined the possibility that maternal alcohol consumption may affect fetal bone development by altering fetal levels of parathyroid hormone (PTH), 1,25(OH)2D, or calcitonin (hormones that regulate calcium (Ca) and bone metabolism in the adult animal) [6].

High impact information on Bone Development

  • Recently, some of the in vivo targets and mechanisms leading to changes in neuronal adaptation, smooth muscle relaxation and growth, intestinal water secretion, bone growth, renin secretion, and other important functions have been identified [7].
  • This decade also saw the description of a male patient who had no functional ER alpha and whose continued bone growth clearly revealed an important function of estrogen in men [8].
  • Cbfbeta interacts with Runx2 and has a critical role in bone development [9].
  • The fusion allele maintains sufficient function in hematopoietic cells to bypass the early embryonic lethality, and identifies a new role for Cbfb in bone development [9].
  • Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation [10].

Chemical compound and disease context of Bone Development


Biological context of Bone Development


Anatomical context of Bone Development


Associations of Bone Development with chemical compounds


Gene context of Bone Development


Analytical, diagnostic and therapeutic context of Bone Development


  1. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Deng, C., Wynshaw-Boris, A., Zhou, F., Kuo, A., Leder, P. Cell (1996) [Pubmed]
  2. Prostaglandin G/H synthase-2 is required for maximal formation of osteoclast-like cells in culture. Okada, Y., Lorenzo, J.A., Freeman, A.M., Tomita, M., Morham, S.G., Raisz, L.G., Pilbeam, C.C. J. Clin. Invest. (2000) [Pubmed]
  3. Recombinant human insulin-like growth factor I stimulates growth and has distinct effects on organ size in hypophysectomized rats. Guler, H.P., Zapf, J., Scheiwiller, E., Froesch, E.R. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  4. Developmental abnormalities in mice transgenic for bovine oncostatin M. Malik, N., Haugen, H.S., Modrell, B., Shoyab, M., Clegg, C.H. Mol. Cell. Biol. (1995) [Pubmed]
  5. Igf1 promotes longitudinal bone growth by insulin-like actions augmenting chondrocyte hypertrophy. Wang, J., Zhou, J., Bondy, C.A. FASEB J. (1999) [Pubmed]
  6. Effect of prenatal ethanol exposure on fetal calcium metabolism. Keiver, K., Ellis, L., Anzarut, A., Weinberg, J. Alcohol. Clin. Exp. Res. (1997) [Pubmed]
  7. Function of cGMP-dependent protein kinases as revealed by gene deletion. Hofmann, F., Feil, R., Kleppisch, T., Schlossmann, J. Physiol. Rev. (2006) [Pubmed]
  8. Mechanisms of estrogen action. Nilsson, S., Mäkelä, S., Treuter, E., Tujague, M., Thomsen, J., Andersson, G., Enmark, E., Pettersson, K., Warner, M., Gustafsson, J.A. Physiol. Rev. (2001) [Pubmed]
  9. Cbfbeta interacts with Runx2 and has a critical role in bone development. Kundu, M., Javed, A., Jeon, J.P., Horner, A., Shum, L., Eckhaus, M., Muenke, M., Lian, J.B., Yang, Y., Nuckolls, G.H., Stein, G.S., Liu, P.P. Nat. Genet. (2002) [Pubmed]
  10. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Satokata, I., Ma, L., Ohshima, H., Bei, M., Woo, I., Nishizawa, K., Maeda, T., Takano, Y., Uchiyama, M., Heaney, S., Peters, H., Tang, Z., Maxson, R., Maas, R. Nat. Genet. (2000) [Pubmed]
  11. Warfarin causes rapid calcification of the elastic lamellae in rat arteries and heart valves. Price, P.A., Faus, S.A., Williamson, M.K. Arterioscler. Thromb. Vasc. Biol. (1998) [Pubmed]
  12. Effects of in vivo administration of antiserum to rat growth hormone on body growth and insulin responsiveness in adipose tissue. Gause, I., Eden, S., Jansson, J.O., Isaksson, O. Endocrinology (1983) [Pubmed]
  13. Insulin-like growth factor-I increases trabecular bone formation and osteoblastic cell proliferation in unloaded rats. Machwate, M., Zerath, E., Holy, X., Pastoureau, P., Marie, P.J. Endocrinology (1994) [Pubmed]
  14. The somatostatin analog octreotide inhibits GH-stimulated, but not IGF-I-stimulated, bone growth in hypophysectomized rats. Zapf, J., Gosteli-Peter, M., Weckbecker, G., Hunziker, E.B., Reinecke, M. Endocrinology (2002) [Pubmed]
  15. Pamidronate. A review of its pharmacological properties and therapeutic efficacy in resorptive bone disease. Fitton, A., McTavish, D. Drugs (1991) [Pubmed]
  16. Accumulation, localization, and compartmentation of transforming growth factor beta during endochondral bone development. Carrington, J.L., Roberts, A.B., Flanders, K.C., Roche, N.S., Reddi, A.H. J. Cell Biol. (1988) [Pubmed]
  17. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Weir, E.C., Philbrick, W.M., Amling, M., Neff, L.A., Baron, R., Broadus, A.E. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  18. Evidence suggesting that the direct growth-promoting effect of growth hormone on cartilage in vivo is mediated by local production of somatomedin. Schlechter, N.L., Russell, S.M., Spencer, E.M., Nicoll, C.S. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  19. Solution structure of core binding factor beta and map of the CBF alpha binding site. Huang, X., Peng, J.W., Speck, N.A., Bushweller, J.H. Nat. Struct. Biol. (1999) [Pubmed]
  20. Amino acid substitutions of conserved residues in the carboxyl-terminal domain of the alpha 1(X) chain of type X collagen occur in two unrelated families with metaphyseal chondrodysplasia type Schmid. Wallis, G.A., Rash, B., Sweetman, W.A., Thomas, J.T., Super, M., Evans, G., Grant, M.E., Boot-Handford, R.P. Am. J. Hum. Genet. (1994) [Pubmed]
  21. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype. Murakami, S., Balmes, G., McKinney, S., Zhang, Z., Givol, D., de Crombrugghe, B. Genes Dev. (2004) [Pubmed]
  22. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Ohbayashi, N., Shibayama, M., Kurotaki, Y., Imanishi, M., Fujimori, T., Itoh, N., Takada, S. Genes Dev. (2002) [Pubmed]
  23. Human osteosarcoma cell lines are dependent on insulin-like growth factor I for in vitro growth. Kappel, C.C., Velez-Yanguas, M.C., Hirschfeld, S., Helman, L.J. Cancer Res. (1994) [Pubmed]
  24. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Ito, Y., Yeo, J.Y., Chytil, A., Han, J., Bringas, P., Nakajima, A., Shuler, C.F., Moses, H.L., Chai, Y. Development (2003) [Pubmed]
  25. Stanniocalcin 1 acts as a paracrine regulator of growth plate chondrogenesis. Wu, S., Yoshiko, Y., De Luca, F. J. Biol. Chem. (2006) [Pubmed]
  26. Growth hormone stimulates the proliferation of cultured chondrocytes from rabbit ear and rat rib growth cartilage. Madsen, K., Friberg, U., Roos, P., Edén, S., Isaksson, O. Nature (1983) [Pubmed]
  27. Androgens and bone. Vanderschueren, D., Vandenput, L., Boonen, S., Lindberg, M.K., Bouillon, R., Ohlsson, C. Endocr. Rev. (2004) [Pubmed]
  28. Calcitriol but no other metabolite of vitamin D is essential for normal bone growth and development in the rat. Parfitt, A.M., Mathews, C.H., Brommage, R., Jarnagin, K., DeLuca, H.F. J. Clin. Invest. (1984) [Pubmed]
  29. Phosphate is a specific signal for induction of osteopontin gene expression. Beck, G.R., Zerler, B., Moran, E. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  30. Role of insulin-like growth factors in embryonic and postnatal growth. Baker, J., Liu, J.P., Robertson, E.J., Efstratiadis, A. Cell (1993) [Pubmed]
  31. Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism. Su, W.C., Kitagawa, M., Xue, N., Xie, B., Garofalo, S., Cho, J., Deng, C., Horton, W.A., Fu, X.Y. Nature (1997) [Pubmed]
  32. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Iotsova, V., Caamaño, J., Loy, J., Yang, Y., Lewin, A., Bravo, R. Nat. Med. (1997) [Pubmed]
  33. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Lanske, B., Karaplis, A.C., Lee, K., Luz, A., Vortkamp, A., Pirro, A., Karperien, M., Defize, L.H., Ho, C., Mulligan, R.C., Abou-Samra, A.B., Jüppner, H., Segre, G.V., Kronenberg, H.M. Science (1996) [Pubmed]
  34. Mesenchymal progenitor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice. Bonyadi, M., Waldman, S.D., Liu, D., Aubin, J.E., Grynpas, M.D., Stanford, W.L. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  35. A Lys644Glu substitution in fibroblast growth factor receptor 3 (FGFR3) causes dwarfism in mice by activation of STATs and ink4 cell cycle inhibitors. Li, C., Chen, L., Iwata, T., Kitagawa, M., Fu, X.Y., Deng, C.X. Hum. Mol. Genet. (1999) [Pubmed]
  36. Comprehensive microarray analysis of bone morphogenetic protein 2-induced osteoblast differentiation resulting in the identification of novel markers for bone development. Vaes, B.L., Dechering, K.J., Feijen, A., Hendriks, J.M., Lefèvre, C., Mummery, C.L., Olijve, W., van Zoelen, E.J., Steegenga, W.T. J. Bone Miner. Res. (2002) [Pubmed]
  37. Protective effect of melatonin against fractionated irradiation-induced epiphyseal injury in a weanling rat model. Yavuz, M.N., Yavuz, A.A., Ulku, C., Sener, M., Yaris, E., Kosucu, P., Karslioglu, I. J. Pineal Res. (2003) [Pubmed]
WikiGenes - Universities