The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Regulation of 17-AAG-induced apoptosis: role of Bcl-2, Bcl-XL, and Bax downstream of 17-AAG-mediated down-regulation of Akt, Raf-1, and Src kinases.

17-allylamino-demethoxy geldanamycin (17-AAG) inhibits the chaperone function of heat shock protein-90 (Hsp-90) and promotes the proteasomal degradation of its misfolded client proteins. Here, we demonstrate that treatment of the human acute myeloid leukemia HL-60 cells with 17-AAG attenuates the intracellular levels of a number of Hsp-90 client proteins, including Akt, c-Raf-1, and c-Src. Also, 17-AAG induced the mitochondrial release and cytosolic accumulation of cytochrome c (cyt c) and second mitochondria-derived activator of caspases (Smac)/DIABLO, resulting in the activation of caspase-9 and caspase-3 and apoptosis. Treatment with 17-AAG triggered the B-cell lymphoma-2 (Bcl-2)-associated X protein (Bax) conformational change associated with apoptosis, while Bax-deficient cells were resistant to 17-AAG-induced apoptosis. In addition, in HL-60/Bcl-2 and HL-60/Bcl-xL cells, which ectopically express Bcl-2 and Bcl-xL respectively, 17-AAG-induced Bax conformational change, cytosolic accumulation of cyt c and Smac/DIABLO, and apoptosis were markedly inhibited. Although the rate of 17-AAG-mediated decline in Akt, c-Raf-1, and c-Src levels was blunted, the total decline was not compromised in HL-60/Bcl-2 and HL-60/Bcl-xL cells. Cotreatment with HA14-1, a nonpeptidic ligand that can bind and inhibit the antiapoptotic activity of Bcl-2, significantly overcame the resistance to 17-AAG-induced apoptosis in HL-60/Bcl-2 cells. Together, these findings indicate that although 17-AAG treatment causes the levels of a number of survival-signaling protein kinases to decline, the downstream engagement of the mitochondrial pathway of apoptosis is regulated by the activity of the Bcl-2 family of proteins. Also, neutralizing the antiapoptotic effect of Bcl-2 would further enhance the antileukemia activity of 17-AAG.[1]

References

 
WikiGenes - Universities