The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

ATP released from astrocytes during swelling activates chloride channels.

ATP release from astrocytes contributes to calcium ([Ca(2+)]) wave propagation and may modulate neuronal excitability. In epithelial cells and hepatocytes, cell swelling causes ATP release, which leads to the activation of a volume-sensitive Cl(-) current (I(Cl,swell)) through an autocrine pathway involving purinergic receptors. Astrocyte swelling is counterbalanced by a regulatory volume decrease, involving efflux of metabolites and activation of I(Cl,swell) and K(+) currents. We used whole cell patch-clamp recordings in cultured astrocytes to investigate the autocrine role of ATP in the activation of I(Cl,swell) by hypo-osmotic solution (HOS). Apyrase, an ATP/ADP nucleotidase, inhibited HOS-activated I(Cl,swell), whereas ATP and the P2Y agonists, ADPbetaS and ADP, induced Cl(-) currents similar to I(Cl,swell). Neither the P2U agonist, UTP nor the P2X agonist, alpha,beta-methylene ATP, were effective. BzATP was less effective than ATP, suggesting that P2X7 receptors were not involved. P2 purinergic antagonists, suramin, RB2, and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) reversibly inhibited activation of I(Cl,swell), suggesting that ATP-activated P2Y1 receptors. Thus ATP release mediates I(Cl,swell) in astrocytes through the activation of P2Y1-like receptors. The multidrug resistance protein ( MRP) transport inhibitors probenicid, indomethacin, and MK-571 all potently inhibited I(Cl.swell). ATP release from astrocytes in HOS was observed directly using luciferin-luciferase and MK-571 reversibly depressed this HOS-induced ATP efflux. We conclude that ATP release via MRP and subsequent autocrine activation of purinergic receptors contributes to the activation of I(Cl,swell) in astrocytes by HOS-induced swelling.[1]

References

  1. ATP released from astrocytes during swelling activates chloride channels. Darby, M., Kuzmiski, J.B., Panenka, W., Feighan, D., MacVicar, B.A. J. Neurophysiol. (2003) [Pubmed]
 
WikiGenes - Universities