The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

PubChem16902     [[[(2R,3S,4R,5R)-5-(6- aminopurin-9-yl)-3,4...

Synonyms: CHEMBL132722, CHEBI:35056, CHEBI:317883, AC1L3MBA, LS-15132, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of AMP-CPP

  • The 1.95 A resolution structure of Streptomyces clavuligerus beta-LS provides a fully resolved view of the active site in which substrate, closely related ATP analog alpha,beta-methyleneadenosine 5'-triphosphate (AMP-CPP) and a single Mg2+ ion are present [1].
  • Injection of alpha,beta-methylene ATP (alpha(beta)meATP), an agonist to P2X receptor, into plantar surface in rats produced the mechanical allodynia along with previously described nocifensive behavior and thermal hyperalgesia [2].
  • Inhibition by alpha,beta-methylene-ATP, which activates ligand-gated P2X receptors, was abolished by zero Ca2+, whereas inhibition by UTP, which activates P2Y2 receptors coupled to Gq/11 and Gi3, was not affected by zero Ca2+ but was abolished by pertussis toxin (PTX) [3].
  • We have investigated the ability of TNP-ATP to inhibit alpha,beta-methylene ATP (alpha,beta-meATP)-evoked responses in 1321N1 human astrocytoma cells expressing recombinant rat or human P2X(2/3) receptors [4].
  • Concentration-response curves for ATP yielded EC50 values of 86 microM, 64 microM and 123 microM, for rat coeliac, mouse coeliac and mouse pelvic ganglion neurons, respectively, while alpha,beta-methylene ATP was inactive [5].

High impact information on AMP-CPP


Chemical compound and disease context of AMP-CPP

  • 2. Atropine, alpha,beta-methylene-ATP and ganglion blocking agents were used to examine the contribution of reflex arc activation and/or potentiation of efferent mechanisms to the NK2 receptor-mediated responses seen in these two tissues [11].

Biological context of AMP-CPP


Anatomical context of AMP-CPP


Associations of AMP-CPP with other chemical compounds


Gene context of AMP-CPP

  • We investigated the effect of 100 microM ATP and alpha,beta-methylene ATP (alpha,beta-meATP; selective agonist for P2X1, P2X2/3 and P2X3 receptors) on motor axon outgrowth in collagen-embedded neural tube explant cultures [27].
  • The former effect was mimicked by a P2X3 agonist, alpha,beta-methylene ATP, at 10(-5) M, while the latter was mimicked by 2-methylthio ADP (a P2Y1 agonist) or UTP (a P2Y2 agonist) at 10(-3) M, suggesting that the former is mediated by P2X receptors and the latter by P2Y receptors [28].
  • A subpopulation of neurons (10-15%) were alpha,beta-methylene ATP (alpha,beta-meATP) sensitive, and in neurons from P2X1 receptor-deficient mice the alpha,beta-meATP response was reduced to 2% of all neurons, demonstrating a direct role for P2X1 subunits [29].
  • ATP, but not alpha,beta-methylene ATP, caused depolarization of AH neurons from P2X3-/- mice [21].
  • The P2X1 receptor agonist alpha,beta-methylene ATP (alpha,beta-MeATP, 0.03-3 microM) contracted arteries but not veins [30].

Analytical, diagnostic and therapeutic context of AMP-CPP


  1. Structure of beta-lactam synthetase reveals how to synthesize antibiotics instead of asparagine. Miller, M.T., Bachmann, B.O., Townsend, C.A., Rosenzweig, A.C. Nat. Struct. Biol. (2001) [Pubmed]
  2. Mechanical allodynia caused by intraplantar injection of P2X receptor agonist in rats: involvement of heteromeric P2X2/3 receptor signaling in capsaicin-insensitive primary afferent neurons. Tsuda, M., Koizumi, S., Kita, A., Shigemoto, Y., Ueno, S., Inoue, K. J. Neurosci. (2000) [Pubmed]
  3. Regulation of adenylyl cyclase type V/VI in smooth muscle: interplay of inhibitory G protein and Ca2+ influx. Murthy, K.S., Makhlouf, G.M. Mol. Pharmacol. (1998) [Pubmed]
  4. Competitive antagonism of recombinant P2X(2/3) receptors by 2', 3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP). Burgard, E.C., Niforatos, W., van Biesen, T., Lynch, K.J., Kage, K.L., Touma, E., Kowaluk, E.A., Jarvis, M.F. Mol. Pharmacol. (2000) [Pubmed]
  5. Pharmacological comparison of P2X receptors on rat coeliac, mouse coeliac and mouse pelvic ganglion neurons. Zhong, Y., Dunn, P.M., Burnstock, G. Neuropharmacology (2000) [Pubmed]
  6. Novel structurally altered P(2X1) receptor is preferentially activated by adenosine diphosphate in platelets and megakaryocytic cells. Greco, N.J., Tonon, G., Chen, W., Luo, X., Dalal, R., Jamieson, G.A. Blood (2001) [Pubmed]
  7. Neuropeptide Y potentiates specifically the purinergic component of the neural responses in the guinea pig saphenous artery. Cheung, D.W. Circ. Res. (1991) [Pubmed]
  8. Electrical responses of guinea pig coronary artery to transmural stimulation. Keef, K.D., Kreulen, D.L. Circ. Res. (1988) [Pubmed]
  9. P2X1-mediated ERK2 activation amplifies the collagen-induced platelet secretion by enhancing myosin light chain kinase activation. Toth-Zsamboki, E., Oury, C., Cornelissen, H., De Vos, R., Vermylen, J., Hoylaerts, M.F. J. Biol. Chem. (2003) [Pubmed]
  10. Transient state kinetic studies of proton liberation by myosin and subfragment 1. Koretz, J.F., Taylor, E.W. J. Biol. Chem. (1975) [Pubmed]
  11. Activation of the micturition reflex by NK2 receptor stimulation in the anaesthetized guinea-pig. Bushfield, M., Metcalfe, M., Naylor, A.M. Br. J. Pharmacol. (1995) [Pubmed]
  12. Functional and biochemical evidence for heteromeric ATP-gated channels composed of P2X1 and P2X5 subunits. Lê, K.T., Boué-Grabot, E., Archambault, V., Séguéla, P. J. Biol. Chem. (1999) [Pubmed]
  13. Juxtamedullary afferent arteriolar responses to P1 and P2 purinergic stimulation. Inscho, E.W., Carmines, P.K., Navar, L.G. Hypertension (1991) [Pubmed]
  14. Trinitrophenyl-substituted nucleotides are potent antagonists selective for P2X1, P2X3, and heteromeric P2X2/3 receptors. Virginio, C., Robertson, G., Surprenant, A., North, R.A. Mol. Pharmacol. (1998) [Pubmed]
  15. Asymmetry of vascular responses of perfused rabbit carotid artery to intraluminal and abluminal vasoactive stimuli. Kaul, S., Waack, B.J., Heistad, D.D. J. Physiol. (Lond.) (1992) [Pubmed]
  16. Binding kinetics of ATP gamma S35 on cultured primary tracheal surface epithelial cells. Kim, K.C., Zheng, Q.X., Wilson, A.K., Lee, B.C., Berman, J.S. Am. J. Respir. Cell Mol. Biol. (1994) [Pubmed]
  17. Pharmacological characterization of heterologously expressed ATP-gated cation channels (P2x purinoceptors). Evans, R.J., Lewis, C., Buell, G., Valera, S., North, R.A., Surprenant, A. Mol. Pharmacol. (1995) [Pubmed]
  18. P2X(1) receptor-deficient mice establish the native P2X receptor and a P2Y6-like receptor in arteries. Vial, C., Evans, R.J. Mol. Pharmacol. (2002) [Pubmed]
  19. Selective activation of nociceptors by P2X receptor agonists in normal and inflamed rat skin. Hamilton, S.G., McMahon, S.B., Lewin, G.R. J. Physiol. (Lond.) (2001) [Pubmed]
  20. Mechanotransduction by intraganglionic laminar endings of vagal tension receptors in the guinea-pig oesophagus. Zagorodnyuk, V.P., Chen, B.N., Costa, M., Brookes, S.J. J. Physiol. (Lond.) (2003) [Pubmed]
  21. Peristalsis is impaired in the small intestine of mice lacking the P2X3 subunit. Bian, X., Ren, J., DeVries, M., Schnegelsberg, B., Cockayne, D.A., Ford, A.P., Galligan, J.J. J. Physiol. (Lond.) (2003) [Pubmed]
  22. Effect of presynaptic P2 receptor stimulation on transmitter release. Sperlagh, B., Vizi, E.S. J. Neurochem. (1991) [Pubmed]
  23. P2 purinoceptor-mediated control of rat cerebral (pial) microvasculature; contribution of P2X and P2Y receptors. Lewis, C.J., Ennion, S.J., Evans, R.J. J. Physiol. (Lond.) (2000) [Pubmed]
  24. Noradrenaline and adenosine triphosphate as co-transmitters of neurogenic vasoconstriction in rabbit mesenteric artery. von Kügelgen, I., Starke, K. J. Physiol. (Lond.) (1985) [Pubmed]
  25. Adenosine triphosphate-evoked currents in cultured neurones dissociated from rat parasympathetic cardiac ganglia. Fieber, L.A., Adams, D.J. J. Physiol. (Lond.) (1991) [Pubmed]
  26. Subtypes of vagal afferent C-fibres in guinea-pig lungs. Undem, B.J., Chuaychoo, B., Lee, M.G., Weinreich, D., Myers, A.C., Kollarik, M. J. Physiol. (Lond.) (2004) [Pubmed]
  27. Expression of P2X purinoceptors during rat brain development and their inhibitory role on motor axon outgrowth in neural tube explant cultures. Cheung, K.K., Chan, W.Y., Burnstock, G. Neuroscience (2005) [Pubmed]
  28. Inhibitory, facilitatory, and excitatory effects of ATP and purinergic receptor agonists on the activity of rat cutaneous nociceptors in vitro. Yajima, H., Sato, J., Giron, R., Nakamura, R., Mizumura, K. Neurosci. Res. (2005) [Pubmed]
  29. Heterogeneity of P2X receptors in sympathetic neurons: contribution of neuronal P2X1 receptors revealed using knockout mice. Calvert, J.A., Evans, R.J. Mol. Pharmacol. (2004) [Pubmed]
  30. Differential localization of P2 receptor subtypes in mesenteric arteries and veins of normotensive and hypertensive rats. Galligan, J.J., Hess, M.C., Miller, S.B., Fink, G.D. J. Pharmacol. Exp. Ther. (2001) [Pubmed]
  31. Effects of luminal flow and nucleotides on [Ca(2+)](i) in rabbit cortical collecting duct. Woda, C.B., Leite, M., Rohatgi, R., Satlin, L.M. Am. J. Physiol. Renal Physiol. (2002) [Pubmed]
  32. P2X purinergic receptor antagonist accelerates skin barrier repair and prevents epidermal hyperplasia induced by skin barrier disruption. Denda, M., Inoue, K., Fuziwara, S., Denda, S. J. Invest. Dermatol. (2002) [Pubmed]
  33. A pharmacological study of the rabbit saphenous artery in vitro: a vessel with a large purinergic contractile response to sympathetic nerve stimulation. Burnstock, G., Warland, J.J. Br. J. Pharmacol. (1987) [Pubmed]
  34. Evidence for the involvement of purinergic signalling in the control of respiration. Thomas, T., Ralevic, V., Bardini, M., Burnstock, G., Spyer, K.M. Neuroscience (2001) [Pubmed]
  35. The CYP450 hydroxylase pathway contributes to P2X receptor-mediated afferent arteriolar vasoconstriction. Zhao, X., Inscho, E.W., Bondlela, M., Falck, J.R., Imig, J.D. Am. J. Physiol. Heart Circ. Physiol. (2001) [Pubmed]
WikiGenes - Universities