The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Sequestration and metabolism of protoxic pyrrolizidine alkaloids by larvae of the leaf beetle Platyphora boucardi and their transfer via pupae into defensive secretions of adults.

Several neotropical leaf-beetles of the genus Platyphora ingest and specifically metabolize plant acquired pyrrolizidine alkaloids (PAs) of the lycopsamine type (e.g., rinderine or intermedine) and enrich the processed alkaloids in their exocrine defensive secretions. In contrast to the related palaearctic leaf beetles of the genus Oreina, which absorb and store only the non-toxic alkaloid N-oxides, Platyphora sequesters PAs exclusively as protoxic tertiary amines. In this study, the ability of P. boucardi larvae to accumulate PAs was investigated. Tracer studies with [14C]rinderine and its N-oxide revealed that P. boucardi larvae, like adult beetles, utilize the two alkaloidal forms with the same efficiency, but accumulate the alkaloid as a tertiary amine exclusively. Ingested rinderine is rapidly epimerized to intermedine, which is localized in the hemolymph and all other tissues; it is also detected on the larval surface. Like adults, larvae are able to synthesize their own alkaloid esters (beetle PAs) from orally administered [14C]retronecine and endogenous aliphatic 2-hydroxy acids. These retronecine esters show the same tissue distribution as intermedine. A long-term feeding experiment lasting for almost four months revealed that retronecine esters synthesized from [14C]retronecine in the larvae are transferred from larvae via pupae into the exocrine glands of adult beetles. Pupae contain ca. 45% of the labeled retronecine originally ingested, metabolized, and stored by larvae; ca. 12% of larval radioactivity could be recovered from the defensive secretions of adults sampled successively over two and a half months. Almost all of this radioactivity is found in the insect-made retronecine esters that are highly enriched in the defensive secretions, i.e., more than 200-fold higher concentration compared to pupae.[1]


WikiGenes - Universities