The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

New findings on interactions among the yeast oligosaccharyl transferase subunits using a chemical cross-linker.

At present, there is very limited knowledge about the structural organization of the yeast oligosaccharyl transferase (OT) complex and the function of each of its nine subunits. Because of the failure of the yeast two-hybrid system to reveal interactions between luminal domains of these subunits, we utilized a membrane permeable, thiocleavable cross-linking reagent dithiobis-succinimidyl propionate to biochemically study the interactions of various OT subunits. Four essential gene products, Ost1p, Wbp1p, Swp1p, and Stt3p were shown to be cross-linked to each other in a pairwise fashion. In addition, Ost1p was found to be cross-linked to all other eight OT subunits individually. This led us to propose that Ost1p may reside in the core of the OT complex and could play an important role in its assembly. Ost4p and Ost5p were found to only interact with specific components of the OT complex and may function as an additional anchor for optimal stability of Stt3p and Ost1p in the membrane, respectively. Interestingly, Ost3p and Ost6p subunits exhibited a surprisingly identical pattern of cross-linking to other subunits, which is consistent with their proposed redundant function. Based on these findings, we analyzed the distribution of the lysine residues that are likely to be involved in cross-linking of OT subunits and propose that the OT subunits interact with each other through either their transmembrane domains and/or a region proximal to it, rather than through their luminal or cytoplasmic domains.[1]


WikiGenes - Universities