The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Molecular cloning and characterization of an adaptor protein Shc isoform from Xenopus laevis oocytes.

In order to gain further insight into IGF-1 receptor signaling in Xenopus laevis oocytes and embryos, we have undertaken the characterization of the adapter protein Shc and studied its implication in oocyte maturation induced after IGF-1 receptor activation, especially since expression of this molecule has been indirectly evidenced in Xenopus oocytes, eggs and embryos. We report herein the cloning from Xenopus postvitellogenic oocytes of a complementary DNA encoding a protein of 470 amino acids which shows the higher identity with the mammalian adaptor protein p52(ShcA). Western blot analysis using homologous antibodies evidenced a 60-kDa protein, p60(Xl)(Shc), that is predominantly expressed in oocytes and in early embryos. We also demonstrate that, like p60(Xl)(Shc), Grb2 and the guanine nucleotide exchange factor Sos are expressed in oocytes throughout vitellogenesis and in early embryos and that overexpression of a dominant-negative form of Grb2 specifically inhibits insulin-induced resumption of meiosis. We finally show that Grb2 binds to p60(Shc) in oocytes specifically upon insulin treatment. Altogether, these results suggest that Shc and Grb2-Sos are implicated in ras-dependent Xenopus oocyte maturation induced by insulin/IGF-1; they also indicate that inability of insulin/IGF-1 to activate the Ras-MAPK cascade in vitellogenic oocytes does not result from an insufficient expression level of Shc, Grb2 and Sos.[1]

References

  1. Molecular cloning and characterization of an adaptor protein Shc isoform from Xenopus laevis oocytes. Chesnel, F., Heligon, C., Richard-Parpaillon, L., Boujard, D. Biol. Cell (2003) [Pubmed]
 
WikiGenes - Universities