The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Time course of airway mechanics of the (+)insert myosin isoform knockout mouse.

Two smooth muscle myosin heavy chain isoforms that differ by the presence ([+]insert) or the absence ([-]insert) of a 7-amino acid insert in the motor domain have a 2-fold difference in their in vitro actin filament velocity. We hypothesized that a preferential expression of the fast (+)insert isoform in airway smooth muscle would increase the rate of bronchoconstriction. To verify our hypothesis we measured the time course of bronchoconstriction following a bolus injection of methacholine (160 microg/kg) in (+)insert isoform knockout (KO) and corresponding wild-type (WT) mice. Neither baseline airway resistance ( Raw) (0.424 +/- 0.04 for WT and 0.374 +/- 0.01 cm H(2)O.s.ml(-1) for KO) nor peak Raw (4.1 +/- 0.9 for WT and 4.0 +/- 0.5 cm H(2)O.s.ml(-1) for KO) differed between groups. However, the time to peak Raw was significantly longer in the KO (17.2 +/- 0.6 s) compared with the WT (14.6 +/- 0.8 s) mice (P < 0.05). Differentiating Raw with respect to time revealed a greater rate of bronchoconstriction for the WT during the initial 4 s, presumably reflecting the faster shortening velocities under these relatively unloaded conditions. Reverse transcriptase-polymerase chain reaction analysis revealed that the (+)insert myosin isoform mRNA content in the WT airways was 47.8 +/- 5.6%. We conclude that the presence of the (+)insert myosin isoform in the airways increases the rate of bronchoconstriction.[1]

References

  1. Time course of airway mechanics of the (+)insert myosin isoform knockout mouse. Tuck, S.A., Maghni, K., Poirier, A., Babu, G.J., Periasamy, M., Bates, J.H., Leguillette, R., Lauzon, A.M. Am. J. Respir. Cell Mol. Biol. (2004) [Pubmed]
 
WikiGenes - Universities