The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Voltage-gated Na+ channel activation induces both action potentials in utricular hair cells and brain-derived neurotrophic factor release in the rat utricle during a restricted period of development.

The mammalian utricular sensory receptors are commonly believed to be non-spiking cells with electrical activity limited to graded membrane potential changes. Here we provide evidence that during the first post-natal week, the sensory hair cells of the rat utricle express a tetrodotoxin (TTX)-sensitive voltage-gated Na+ current that displays most of the biophysical and pharmacological characteristics of neuronal Na+ current. Single-cell RT-PCR reveals that several alpha-subunit isoforms of the Na+ channels are co-expressed within a single hair cell, with a major expression of Nav1.2 and Nav1.6 subunits. In neonatal hair cells, 30 % of the Na+ channels are available for activation at the resting potential. Depolarizing current injections in the range of the transduction currents are able to trigger TTX-sensitive action potentials. We also provide evidence of a TTX-sensitive activity-dependent brain-derived neurotrophic factor (BDNF) release by early post-natal utricle explants. Developmental analysis shows that Na+ currents decrease dramatically from post-natal day 0 (P0) to P8 and become almost undetectable at P21. Concomitantly, depolarizing stimuli fail to induce both action potential and BDNF release at P20. The present findings reveal that vestibular hair cells express neuronal-like TTX-sensitive Na+ channels able to generate Na+-driven action potentials only during the early post-natal period of development. During the same period an activity-dependent BDNF secretion by utricular explants has been demonstrated. This could be an important mechanism involved in vestibular sensory system differentiation and synaptogenesis.[1]

References

  1. Voltage-gated Na+ channel activation induces both action potentials in utricular hair cells and brain-derived neurotrophic factor release in the rat utricle during a restricted period of development. Chabbert, C., Mechaly, I., Sieso, V., Giraud, P., Brugeaud, A., Lehouelleur, J., Couraud, F., Valmier, J., Sans, A. J. Physiol. (Lond.) (2003) [Pubmed]
 
WikiGenes - Universities