The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Phosphorylation by casein kinase II alters the biological activity of calmodulin.

Calmodulin is the major intracellular Ca(2+)-binding protein, providing Ca(2+)-dependent regulation of numerous intracellular enzymes. The phosphorylation of calmodulin may provide an additional mechanism for modulating its function as a signal transducer. Phosphocalmodulin has been identified in tissues and cells, and calmodulin is phosphorylated both in vitro and in intact cells by various enzymes. Phosphorylation of calmodulin on serine/threonine residues by casein kinase II decreases its ability to activate both myosin-light-chain kinase and cyclic nucleotide phosphodiesterase. For myosin-light-chain kinase the primary effect is an inhibition of the Vmax. of the reaction, with no apparent change in the concentration at which half-maximal velocity is attained (K0.5) for either Ca2+ or calmodulin. In contrast, for phosphodiesterase, phosphorylation of calmodulin significantly increases the K0.5 for calmodulin without noticeably altering the Vmax. or the K0.5 for Ca2+. The higher the stoichiometry of phosphorylation of calmodulin, the greater the inhibition of calmodulin-stimulated activity for both enzymes. Therefore the phosphorylation of calmodulin by casein kinase II appears to provide a Ca(2+)-independent mechanism whereby calmodulin regulates at least two important target enzymes, myosin-light-chain kinase and cyclic nucleotide phosphodiesterase.[1]

References

  1. Phosphorylation by casein kinase II alters the biological activity of calmodulin. Sacks, D.B., Davis, H.W., Williams, J.P., Sheehan, E.L., Garcia, J.G., McDonald, J.M. Biochem. J. (1992) [Pubmed]
 
WikiGenes - Universities