The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

CALM3  -  calmodulin 3 (phosphorylase kinase, delta)

Sus scrofa

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of CALM1

 

High impact information on CALM1

  • The deduced primary structure of this DGK contains the putative ATP-binding sites, two cysteine-rich zinc finger-like sequences similar to those found in protein kinase C, and two E-F hand motifs, typical of Ca2(+)-binding proteins like calmodulin [6].
  • Phosphorylation of tubulin with a calmodulin-dependent protein kinase similar to that found in postsynaptic densities inhibits its ability to self-assemble into microtubules in a reversible fashion [7].
  • In smooth muscle, cyclic attachment and detachment of cross-bridges is thought to be induced by a Ca2+- and calmodulin-dependent myosin light chain kinase which phosphorylates myosin [8].
  • The calmodulin antagonists, trifluoperazine (10(-5) M), pimozide (10(-5) M), and the naphthalene sulfonamides, W-7 and W-13 (10(-5) M), inhibited gastrin-stimulated HIP by 45.6 38.5, 42.3, and 37.2%, respectively [9].
  • Calmodulin at 0.5-10 micrograms/ml stimulated the Ca pumping activity of EGTA-washed podosomes [10].
 

Chemical compound and disease context of CALM1

 

Biological context of CALM1

 

Anatomical context of CALM1

 

Associations of CALM1 with chemical compounds

 

Physical interactions of CALM1

  • Missense mutation analysis indicates that the Lys and Arg residues are essential for calmodulin binding to the synthetic peptide RYR1 PM3 [22].
  • Amino-terminal conserved region in proteinase inhibitor domain of calpastatin potentiates its calpain inhibitory activity by interacting with calmodulin-like domain of the proteinase [23].
  • The temperature dependence of glucagon binding by calmodulin shows that the association is enthalpy driven [24].
  • The stoichiometry of calmodulin binding to MBP was approximately 1:1 [25].
 

Enzymatic interactions of CALM1

 

Regulatory relationships of CALM1

 

Other interactions of CALM1

  • Regulation of the RYR1 and RYR2 Ca2+ release channel isoforms by Ca2+-insensitive mutants of calmodulin [27].
  • In submicromolar Ca2+, activation of the RYR1 isoform by each of the single-point CaM mutants was similar to that by wild-type apoCaM, whereas in micromolar Ca2+, RYR1 inhibition by Ca2+CaM was abolished by mutations targeting CaM's C-terminal Ca2+ sites [27].
  • (6) The phosphotransferase activity of the purified CaMKII was in vitro inhibited after transphosphorylation by PKC if calmodulin was absent during transphosphorylation [30].
  • Thus, it appears that Ca2+-binding site I of calmodulin is at or near binding sites of calmodulin for TnI, TnT, and phospholamban [31].
  • Ca2+ potentiates cAMP-dependent expression of urokinase-type plasminogen activator gene through a calmodulin- and protein kinase C-independent mechanism [32].
 

Analytical, diagnostic and therapeutic context of CALM1

References

  1. Tetanus toxin and botulinum toxins type A and B inhibit glutamate, gamma-aminobutyric acid, aspartate, and met-enkephalin release from synaptosomes. Clues to the locus of action. McMahon, H.T., Foran, P., Dolly, J.O., Verhage, M., Wiegant, V.M., Nicholls, D.G. J. Biol. Chem. (1992) [Pubmed]
  2. Vimentin rearrangement during African swine fever virus infection involves retrograde transport along microtubules and phosphorylation of vimentin by calcium calmodulin kinase II. Stefanovic, S., Windsor, M., Nagata, K.I., Inagaki, M., Wileman, T. J. Virol. (2005) [Pubmed]
  3. Trifluoperazine binding to mutant calmodulins. Massom, L.R., Lukas, T.J., Persechini, A., Kretsinger, R.H., Watterson, D.M., Jarrett, H.W. Biochemistry (1991) [Pubmed]
  4. Calmodulin activities are significantly increased in both uninvolved and involved epidermis in psoriasis. Mizumoto, T., Hashimoto, Y., Hirokawa, M., Ohkuma, N., Iizuka, H., Ohkawara, A. J. Invest. Dermatol. (1985) [Pubmed]
  5. Regulation of a voltage-sensitive release mechanism by Ca(2+)-calmodulin-dependent kinase in cardiac myocytes. Zhu, J., Ferrier, G.R. Am. J. Physiol. Heart Circ. Physiol. (2000) [Pubmed]
  6. Porcine diacylglycerol kinase sequence has zinc finger and E-F hand motifs. Sakane, F., Yamada, K., Kanoh, H., Yokoyama, C., Tanabe, T. Nature (1990) [Pubmed]
  7. Phosphorylation of tubulin enhances its interaction with membranes. Hargreaves, A.J., Wandosell, F., Avila, J. Nature (1986) [Pubmed]
  8. Low Ca2+ impedes cross-bridge detachment in chemically skinned Taenia coli. Güth, K., Junge, J. Nature (1982) [Pubmed]
  9. Action of gastrin in guinea pig oxyntic cells. Studies using quantitative cytochemistry. Heldsinger, A.A., Vinik, A.I. J. Clin. Invest. (1984) [Pubmed]
  10. Adenosine triphosphate-dependent calcium pump in the plasma membrane of guinea pig and human neutrophils. Lagast, H., Lew, P.D., Waldvogel, F.A. J. Clin. Invest. (1984) [Pubmed]
  11. Improvement of myocardial function by trifluoperazine, a calmodulin antagonist, after acute coronary artery occlusion and coronary revascularization. Otani, H., Engelman, R.M., Rousou, J.A., Breyer, R.H., Clement, R., Prasad, R., Klar, J., Das, D.K. J. Thorac. Cardiovasc. Surg. (1989) [Pubmed]
  12. p36, the major cytoplasmic substrate of src tyrosine protein kinase, binds to its p11 regulatory subunit via a short amino-terminal amphiphatic helix. Johnsson, N., Marriott, G., Weber, K. EMBO J. (1988) [Pubmed]
  13. Axonal transport of calmodulin: a physiologic approach to identification of long-term associations between proteins. Brady, S.T., Tytell, M., Heriot, K., Lasek, R.J. J. Cell Biol. (1981) [Pubmed]
  14. Vascular smooth muscle. Calmodulin and cyclic AMP-dependent protein kinase after calcium sensitivity in porcine carotid skinned fibers. Rüegg, J.C., Paul, R.J. Circ. Res. (1982) [Pubmed]
  15. Increasing intracellular free calcium induces circumferential contractions in isolated cochlear outer hair cells. Dulon, D., Zajic, G., Schacht, J. J. Neurosci. (1990) [Pubmed]
  16. Comparison of calmodulin and troponin C with and without its amino-terminal helix (residues 1-11) in the activation of erythrocyte Ca(2+)-ATPase. da Silva, E.F., Sorenson, M.M., Smillie, L.B., Barrabin, H., Scofano, H.M. J. Biol. Chem. (1993) [Pubmed]
  17. Role of calmodulin methionine residues in mediating productive association with cardiac ryanodine receptors. Balog, E.M., Norton, L.E., Thomas, D.D., Fruen, B.R. Am. J. Physiol. Heart Circ. Physiol. (2006) [Pubmed]
  18. Role of calcium and calmodulin in activation of the oxyntic cell by histamine and carbamylcholine in the guinea pig. Walker, W., Vinik, A., Heldsinger, A., Kaveh, R. J. Clin. Invest. (1983) [Pubmed]
  19. Substrate proteins for calmodulin-sensitive and phospholipid-sensitive Ca2+-dependent protein kinases in heart, and inhibition of their phosphorylation by palmitoylcarnitine. Katoh, N., Wrenn, R.W., Wise, B.C., Shoji, M., Kuo, J.F. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  20. Calmodulin localization in mammalian spermatozoa. Jones, H.P., Lenz, R.W., Palevitz, B.A., Cormier, M.J. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  21. Nitric oxide modulates pepsinogen secretion induced by calcium-mediated agonist in guinea pig gastric chief cells. Fiorucci, S., Distrutti, E., Chiorean, M., Santucci, L., Belia, S., Fano, G., De Giorgio, R., Stanghellini, V., Corinaldesi, R., Morelli, A. Gastroenterology (1995) [Pubmed]
  22. Identification and characterization of three calmodulin binding sites of the skeletal muscle ryanodine receptor. Menegazzi, P., Larini, F., Treves, S., Guerrini, R., Quadroni, M., Zorzato, F. Biochemistry (1994) [Pubmed]
  23. Amino-terminal conserved region in proteinase inhibitor domain of calpastatin potentiates its calpain inhibitory activity by interacting with calmodulin-like domain of the proteinase. Ma, H., Yang, H.Q., Takano, E., Hatanaka, M., Maki, M. J. Biol. Chem. (1994) [Pubmed]
  24. Binding of hormones and neuropeptides by calmodulin. Malencik, D.A., Anderson, S.R. Biochemistry (1983) [Pubmed]
  25. Myelin basic protein: interaction with calmodulin and gangliosides. Chan, K.F., Robb, N.D., Chen, W.H. J. Neurosci. Res. (1990) [Pubmed]
  26. Phosphorylation of the porcine skeletal and cardiac muscle sarcoplasmic reticulum ryanodine receptor. Strand, M.A., Louis, C.F., Mickelson, J.R. Biochim. Biophys. Acta (1993) [Pubmed]
  27. Regulation of the RYR1 and RYR2 Ca2+ release channel isoforms by Ca2+-insensitive mutants of calmodulin. Fruen, B.R., Black, D.J., Bloomquist, R.A., Bardy, J.M., Johnson, J.D., Louis, C.F., Balog, E.M. Biochemistry (2003) [Pubmed]
  28. Benzylisoquinoline compounds inhibit the ability of calmodulin to activate cyclic nucleotide phosphodiesterase. Hu, Z.Y., Chen, S.L., Hao, Z.G., Huang, W.L., Peng, S.X. Cell. Signal. (1989) [Pubmed]
  29. Calcium and calmodulin inhibit phosphorylation of a novel auditory nerve protein. Coling, D.E., Naik, R.M., Schacht, J. Hear. Res. (1994) [Pubmed]
  30. Protein kinase C-alpha attenuates cholinergically stimulated gastric acid secretion of rabbit parietal cells. Fährmann, M., Kaufhold, M., Pfeiffer, A.F., Seidler, U. Br. J. Pharmacol. (2003) [Pubmed]
  31. Site-specific derivatives of wheat germ calmodulin. Interactions with troponin and sarcoplasmic reticulum. Strasburg, G.M., Hogan, M., Birmachu, W., Thomas, D.D., Louis, C.F. J. Biol. Chem. (1988) [Pubmed]
  32. Ca2+ potentiates cAMP-dependent expression of urokinase-type plasminogen activator gene through a calmodulin- and protein kinase C-independent mechanism. Ziegler, A., Hagmann, J., Kiefer, B., Nagamine, Y. J. Biol. Chem. (1990) [Pubmed]
  33. Calmodulin is tightly associated with synaptic vesicles independent of calcium. Hooper, J.E., Kelly, R.B. J. Biol. Chem. (1984) [Pubmed]
  34. Calcium/calmodulin-regulated guanylate cyclase of the excitable ciliary membrane from Paramecium. Dissociation of calmodulin by La3+: calmodulin specificity and properties of the reconstituted guanylate cyclase. Klumpp, S., Kleefeld, G., Schultz, J.E. J. Biol. Chem. (1983) [Pubmed]
 
WikiGenes - Universities