The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Pasteurella multocida toxin selectively facilitates phosphatidylinositol 4,5-bisphosphate hydrolysis by bombesin, vasopressin, and endothelin. Requirement for a functional G protein.

Treatment of Swiss 3T3 cells with a subsaturating concentration of recombinant Pasteurella multocida toxin (rPMT) markedly potentiated the production of inositol phosphates induced by bombesin, vasopressin, and endothelin but not by platelet-derived growth factor (PDGF) (AA and BB homodimers). Similarly, the neuropeptides but not PDGF caused a shift in the dose-dependent increase in inositol phosphates induced by rPMT. The rate of accumulation of inositol phosphates induced by bombesin was increased 2-fold by rPMT treatment while that of PDGF was unaffected. rPMT treatment also enhanced bombesin-induced inositol(1,4,5)trisphosphate, the direct product of phosphatidylinositol 4,5-bisphosphate hydrolysis. In contrast, treatment of cells with rPMT had no effect on the tyrosine phosphorylation of phospholipase C gamma. Depletion of protein kinase C increased rPMT-induced inositol phosphates in a manner similar to that observed for bombesin but not PDGF. Thus, rPMT selectively potentiates neuropeptide-mediated inositol phosphate production. The action of rPMT on phosphatidylinositol 4,5-bisphosphate hydrolysis persisted in streptolysin O-permeabilized cells. Addition of guanosine 5'-O-(beta-thiodiphosphate) to permeabilized cells markedly reduced rPMT-induced inositol phosphates in a time- and dose-dependent manner. rPMT also increased the sensitivity of phospholipase C for free calcium. Our results strongly suggest that the action of rPMT facilitates the coupling of G protein to phospholipase C.[1]

References

 
WikiGenes - Universities