The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Pasteurella


High impact information on Pasteurella

  • Pasteurella canis was the most common isolate of dog bites, and Past. multocida subspecies multocida and septica were the most common isolates of cat bites [6].
  • More from the pesky Pasteurella [7].
  • The N-terminal half of CNF2 showed striking homology (27% identity and 80% conserved residues) to the N-terminal portion of Pasteurella multocida toxin [8].
  • We show that the C-terminal 70 amino acids of leukotoxin from Pasteurella hemolytica can substitute functionally for the HlyA signal sequence [9].
  • Treatment of the cells with O-sialoglycoprotease from Pasteurella haemolytica, an enzyme that selectively cleaves mucin-type O-linked glycoproteins, reduced binding to purified P- and L-selectin in all cases [10].

Chemical compound and disease context of Pasteurella

  • Molecular directionality of polysaccharide polymerization by the Pasteurella multocida hyaluronan synthase [11].
  • The sequence of the pmHS enzyme is not very similar to the vertebrate heparin/heparan sulfate glycosyltransferases, EXT1 and 2, or to other Pasteurella glycosaminoglycan synthases that produce hyaluronan or chondroitin [12].
  • Treatment of Swiss 3T3 cells with a subsaturating concentration of recombinant Pasteurella multocida toxin (rPMT) markedly potentiated the production of inositol phosphates induced by bombesin, vasopressin, and endothelin but not by platelet-derived growth factor (PDGF) (AA and BB homodimers) [13].
  • Crystal structure of Pasteurella haemolytica ferric ion-binding protein A reveals a novel class of bacterial iron-binding proteins [14].
  • The intracellularly acting Pasteurella multocida toxin (PMT) is a potent mitogen that stimulates Gq-dependent formation of inositol trisphosphate [15].

Biological context of Pasteurella


Anatomical context of Pasteurella


Gene context of Pasteurella


Analytical, diagnostic and therapeutic context of Pasteurella


  1. How bacteria could cause cancer: one step at a time. Lax, A.J., Thomas, W. Trends Microbiol. (2002) [Pubmed]
  2. Characterization of the human transferrin and lactoferrin receptors in Haemophilus influenzae. Schryvers, A.B. Mol. Microbiol. (1988) [Pubmed]
  3. Pharmacokinetic and pharmacodynamic profiles of danofloxacin administered by two dosing regimens in calves infected with Mannheimia (Pasteurella) haemolytica. Sarasola, P., Lees, P., AliAbadi, F.S., McKellar, Q.A., Donachie, W., Marr, K.A., Sunderland, S.J., Rowan, T.G. Antimicrob. Agents Chemother. (2002) [Pubmed]
  4. Characterization of the dermonecrotic toxin in members of the genus Bordetella. Walker, K.E., Weiss, A.A. Infect. Immun. (1994) [Pubmed]
  5. Lung lysophospholipase activity in specific-pathogen-free rats infected with Pasteurella pneumotropica or Mycoplasma pulmonis. Laubach, H.E., Kocan, A.A., Sartain, K.E. Infect. Immun. (1978) [Pubmed]
  6. Bacteriologic analysis of infected dog and cat bites. Emergency Medicine Animal Bite Infection Study Group. Talan, D.A., Citron, D.M., Abrahamian, F.M., Moran, G.J., Goldstein, E.J. N. Engl. J. Med. (1999) [Pubmed]
  7. More from the pesky Pasteurella. Beyt, B.E. JAMA (1983) [Pubmed]
  8. Cytotoxic necrotizing factor type 2 produced by virulent Escherichia coli modifies the small GTP-binding proteins Rho involved in assembly of actin stress fibers. Oswald, E., Sugai, M., Labigne, A., Wu, H.C., Fiorentini, C., Boquet, P., O'Brien, A.D. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  9. Functional replacement of the hemolysin A transport signal by a different primary sequence. Zhang, F., Greig, D.I., Ling, V. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  10. Differential colon cancer cell adhesion to E-, P-, and L-selectin: role of mucin-type glycoproteins. Mannori, G., Crottet, P., Cecconi, O., Hanasaki, K., Aruffo, A., Nelson, R.M., Varki, A., Bevilacqua, M.P. Cancer Res. (1995) [Pubmed]
  11. Molecular directionality of polysaccharide polymerization by the Pasteurella multocida hyaluronan synthase. DeAngelis, P.L. J. Biol. Chem. (1999) [Pubmed]
  12. Identification and molecular cloning of a heparosan synthase from Pasteurella multocida type D. DeAngelis, P.L., White, C.L. J. Biol. Chem. (2002) [Pubmed]
  13. Pasteurella multocida toxin selectively facilitates phosphatidylinositol 4,5-bisphosphate hydrolysis by bombesin, vasopressin, and endothelin. Requirement for a functional G protein. Murphy, A.C., Rozengurt, E. J. Biol. Chem. (1992) [Pubmed]
  14. Crystal structure of Pasteurella haemolytica ferric ion-binding protein A reveals a novel class of bacterial iron-binding proteins. Shouldice, S.R., Dougan, D.R., Williams, P.A., Skene, R.J., Snell, G., Scheibe, D., Kirby, S., Hosfield, D.J., McRee, D.E., Schryvers, A.B., Tari, L.W. J. Biol. Chem. (2003) [Pubmed]
  15. Pasteurella multocida toxin facilitates inositol phosphate formation by bombesin through tyrosine phosphorylation of G alpha q. Baldwin, M.R., Pullinger, G.D., Lax, A.J. J. Biol. Chem. (2003) [Pubmed]
  16. Rapid chemoenzymatic synthesis of monodisperse hyaluronan oligosaccharides with immobilized enzyme reactors. DeAngelis, P.L., Oatman, L.C., Gay, D.F. J. Biol. Chem. (2003) [Pubmed]
  17. Molecular analysis of the aroA gene of Pasteurella multocida and vaccine potential of a constructed aroA mutant. Homchampa, P., Strugnell, R.A., Adler, B. Mol. Microbiol. (1992) [Pubmed]
  18. Regulation of osteoblast differentiation by Pasteurella multocida toxin (PMT): a role for Rho GTPase in bone formation. Harmey, D., Stenbeck, G., Nobes, C.D., Lax, A.J., Grigoriadis, A.E. J. Bone Miner. Res. (2004) [Pubmed]
  19. A new tetracycline resistance determinant, Tet H, from Pasteurella multocida specifying active efflux of tetracycline. Hansen, L.M., McMurry, L.M., Levy, S.B., Hirsh, D.C. Antimicrob. Agents Chemother. (1993) [Pubmed]
  20. A heptosyltransferase mutant of Pasteurella multocida produces a truncated lipopolysaccharide structure and is attenuated in virulence. Harper, M., Cox, A.D., St Michael, F., Wilkie, I.W., Boyce, J.D., Adler, B. Infect. Immun. (2004) [Pubmed]
  21. Pasteurella haemolytica leukotoxin-induced increase in phospholipase A2 activity in bovine neutrophils. Wang, Z., Clarke, C., Clinkenbeard, K. Infect. Immun. (1998) [Pubmed]
  22. Induction of inflammatory cytokines in bovine alveolar macrophages following stimulation with Pasteurella haemolytica lipopolysaccharide. Yoo, H.S., Maheswaran, S.K., Lin, G., Townsend, E.L., Ames, T.R. Infect. Immun. (1995) [Pubmed]
  23. Enhanced adhesion of Pasteurella multocida to cultured turkey peripheral blood monocytes. Pruimboom, I.M., Rimler, R.B., Ackermann, M.R. Infect. Immun. (1999) [Pubmed]
  24. Effects of localized Pasteurella haemolytica infection on erythromycin-binding properties of bovine alpha-1-acid glycoprotein, albumin, serum, and tissue chamber fluids. Walker, J.L., Clarke, C.R., Hague, C.M., Bourne, D.W., Lessley, B.A. Antimicrob. Agents Chemother. (1994) [Pubmed]
  25. Physical and morphological characteristics of eucaryotic ribosomes and lipopolysaccharide complexes. Phillips, M., Brogden, K.A. Infect. Immun. (1987) [Pubmed]
  26. Novel spectinomycin/streptomycin resistance gene, aadA14, from Pasteurella multocida. Kehrenberg, C., Catry, B., Haesebrouck, F., de Kruif, A., Schwarz, S. Antimicrob. Agents Chemother. (2005) [Pubmed]
  27. MHCII, Tlr4 and Nramp1 genes control host pulmonary resistance against the opportunistic bacterium Pasteurella pneumotropica. Chapes, S.K., Mosier, D.A., Wright, A.D., Hart, M.L. J. Leukoc. Biol. (2001) [Pubmed]
  28. The biphasic mRNA expression pattern of bovine interleukin-8 in Pasteurella haemolytica lipopolysaccharide-stimulated alveolar macrophages is primarily due to tumor necrosis factor alpha. Lafleur, R.L., Abrahamsen, M.S., Maheswaran, S.K. Infect. Immun. (1998) [Pubmed]
  29. Sequencing analysis of a putative human O-sialoglycoprotein endopeptidase gene (OSGEP) and analysis of a bidirectional promoter between the OSGEP and APEX genes. Seki, Y., Ikeda, S., Kiyohara, H., Ayabe, H., Seki, T., Matsui, H. Gene (2002) [Pubmed]
  30. Cloning and characterization of the exbB-exbD-tonB locus of Pasteurella haemolytica A1. Graham, M.R., Lo, R.Y. Gene (1997) [Pubmed]
  31. Molecular analysis of tetracycline resistance in Pasteurella aerogenes. Kehrenberg, C., Schwarz, S. Antimicrob. Agents Chemother. (2001) [Pubmed]
  32. Detection of immunoglobulin G to Pasteurella haemolytica capsular polysaccharide by enzyme-linked immunosorbent assay. Townsend, E.L., Maheswaran, S.K., Leininger, J.R., Ames, T.R. J. Clin. Microbiol. (1987) [Pubmed]
  33. Purification and characterization of an adhesin from Pasteurella haemolytica. Jaramillo, L., Díaz, F., Hernández, P., Debray, H., Trigo, F., Mendoza, G., Zenteno, E. Glycobiology (2000) [Pubmed]
  34. High-performance liquid chromatography of Pasteurella haemolytica leukotoxin using anion-exchange perfusion columns. el Rassi, Z., Clinkenbeard, P.A., Clinkenbeard, K.D. Journal of chromatography. A. (1998) [Pubmed]
  35. Use of tilmicosin for treatment of pasteurellosis in rabbits. McKay, S.G., Morck, D.W., Merrill, J.K., Olson, M.E., Chan, S.C., Pap, K.M. Am. J. Vet. Res. (1996) [Pubmed]
WikiGenes - Universities