A mutation in GroEL interferes with protein folding by reducing the rate of discharge of sequestered polypeptides.
GroEL140, a mutant Escherichia coli chaperonin unable to support bacteriophage lambda head assembly, was purified to near homogeneity and compared to wild type GroEL (cpn60). GroEL140 exhibited a 1.5-fold lower ATPase activity relative to the wild type protein. The hydrolysis of ATP by both polypeptides was fully inhibited by an excess of ATP gamma S and partially inhibited by ADP and 5'-adenylylimidodiphosphate, suggesting that adenine nucleotides display different affinities for the ATP binding site of chaperonins. GroEL140 was more sensitive to trypsin digestion compared to wild type GroEL indicating that the mutation destabilized the conformation of the mutant. The proteolytic susceptibility of both chaperonins was similarly enhanced upon addition of ATP, ADP or non-hydrolyzable ATP analogs, providing evidence (i) of a conformational change in the chaperonin structure which is likely to drive the protein discharge process, and (ii) that hydrolysis of ATP is not required to achieve topological modifications. GroEL140 retained its ability to bind non-native ribulose bisphosphate carboxylase/oxygenase (Rbu-P2-carboxylase), but released bound proteins upon addition of ATP and GroES (cpn 10) 6-7-fold less efficiently compared to GroEL. This functional defect was shown to be related to a suboptimal, but not an absence of, interaction with GroES since (i) GroEL140 and GroES were unable to form a complex isolatable by size exclusion chromatography, and (ii) increasing the incubation time or the concentration of GroES enhanced the amount of refolded Rbu-P2-carboxylase discharged from GroEL140-Rbu-P2-carboxylase binary complexes. Pulse-chase experiments involving a double immunoabsorption technique confirmed that Rbu-P2-carboxylase remained associated two times longer with GroEL140 than with GroEL in vivo.[1]References
- A mutation in GroEL interferes with protein folding by reducing the rate of discharge of sequestered polypeptides. Baneyx, F., Gatenby, A.A. J. Biol. Chem. (1992) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg