The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Studies on the mechanism of NADPH oxidation by the granule fraction isolated from human resting polymorphonuclear blood cells.

Various factor affecting NADPH-oxidation by resting human leucocyte granules (LG) at acid pH, have been investigated. It was found that: 1) oxidation of NADPH by LG was increasingly inhibited by increased cyanide concentrations in the medium and was abolished by 4 mM cyanide. 2) with or without cyanide in the incubation medium, LG omitted, Mn++ in the presence of NADPH induced superoxide anion (O- WITH 2) production, as evidenced by oxygen consumption and H2O2 production, which were abolished (in the absence of cyanide) by cytochrome C (a potent O- with 2 scavenger). 3) Both NADPH oxidation in the presence of 2 mM cyanide (cyanide-resistant) and in its absence (cyanide-sensitive) by LG occurred only in the presence of Mn++, and both were inhibited by superoxide dismutase. 4) Cyanide-resistant NADPH oxidation by LG generated H2O2, was inhibited by H2O2 and was not modified by "active" catalase. The ratio of cyanide-resistant NADPH oxidation/O2 uptake was 1 up to 1.25 mM NADPH, and increased above this concentration. 5) Cyanide-sensitive NADPH oxidation was inhibited by catalase and increased upon addition of H2O2. The ratio of cyanide-sensitive NADPH oxidation/O2 uptake was 2. It was concluded that after initiation by O - with 2, produced independently of LG, two sequential types of LG dependent NADPH oxidations occur. First, an O - with 2-dependent protein mediated NADPH oxidation (cyanide-resistant) which generates H2O2 and O - with 2 occurs. Second, NADPH peroxidation (cyanide-sensitive) which utilizes H2O2 takes place.[1]


WikiGenes - Universities