The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Regulation of luteinizing hormone-beta and follicle-stimulating hormone (FSH)-beta gene transcription by androgens: testosterone directly stimulates FSH-beta transcription independent from its role on follistatin gene expression.

The gonadotropin beta-subunit mRNAs are differentially regulated by androgens. Testosterone (T) suppresses LH-beta and increases FSH-beta. We aimed to determine whether androgens regulate LH-beta and FSH-beta transcription [as measured by changes in primary transcript (PT)] and to determine whether androgens act directly on FSH-beta or via the intrapituitary activin/follistatin (FS) system. In castrate + GnRH antagonist-treated rats, T increased FSH-beta PT between 3 and 48 h. In contrast, T suppressed LH-beta PT. The increases in FSH-beta mRNA and PT were associated with reduced FS mRNA. Activin betaB mRNA was modestly suppressed. The increase in FSH-beta PT after T was androgen specific. Both T and dihydrotestosterone (DHT) increased FSH-beta PT 2-fold and decreased both FS and betaB mRNA. Estradiol suppressed FSH-beta PT 3-fold and had no effect on FS or betaB mRNAs. LH-beta PT was suppressed by DHT. To determine whether T stimulation of FSH-beta PT reflected a decrease in pituitary FS, we gave androgen in the presence of exogenous FS in vitro. T and DHT increased FSH-beta PT 2- to 3-fold. FS alone decreased FSH-beta PT 40% but did not diminish the increase FSH-beta PT in response to T. T, DHT, and FS did not affect FS mRNA, betaB mRNA, or LH-beta PT. In conclusion, androgens acting directly on the pituitary increase FSH-beta and decrease LH-beta transcription. The increase in FSH-beta PT in response to T was androgen specific and occurs in the presence of excess FS, suggesting that T stimulates FSH-beta transcription independently of modulation of FS.[1]

References

 
WikiGenes - Universities