Nodal signaling in vertebrate development.
TGFss signals belonging to the Nodal family set up the embryonic axes, induce mesoderm and endoderm, pattern the nervous system, and determine left-right asymmetry in vertebrates. Nodal signaling activates a canonical TGFss pathway involving activin receptors, Smad2 transcription factors, and FoxH1 coactivators. In addition, Nodal signaling is dependent on coreceptors of the EGF-CFC family and antagonized by the Lefty and Cerberus families of secreted factors. Additional modulators of Nodal signaling include convertases that regulate the generation of the mature signal, and factors such as Arkadia and DRAP1 that regulate the cellular responses to the signal. Complex regulatory cascades and autoregulatory loops coordinate Nodal signaling during early development. Nodals have concentration-dependent roles and can act both locally and at a distance. These studies demonstrate that Nodal signaling is modulated at almost every level to precisely orchestrate tissue patterning during vertebrate embryogenesis.[1]References
- Nodal signaling in vertebrate development. Schier, A.F. Annu. Rev. Cell Dev. Biol. (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg