TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology.
Tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6) is a crucial signaling molecule regulating a diverse array of physiological processes, including adaptive immunity, innate immunity, bone metabolism and the development of several tissues including lymph nodes, mammary glands, skin and the central nervous system. It is a member of a group of six closely related TRAF proteins, which serve as adapter molecules, coupling the TNF receptor (TNFR) superfamily to intracellular signaling events. Among the TRAF proteins, TRAF6 is unique in that, in addition to mediating TNFR family signaling, it is also essential for signaling downstream of an unrelated family of receptors, the interleukin-1 (IL-1) receptor/Toll-like receptor (IL-1R/TLR) superfamily. Gene targeting experiments have identified several indispensable physiological functions of TRAF6, and structural and biochemical studies have revealed the potential mechanisms of its action. By virtue of its many signaling roles, TRAF6 represents an important target in the regulation of many disease processes, including immunity, inflammation and osteoporosis.[1]References
- TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology. Wu, H., Arron, J.R. Bioessays (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg