The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Mammary Glands, Human

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Mammary Glands, Human

 

Psychiatry related information on Mammary Glands, Human

  • We speculate that, because a reduced risk for breast cancer is conferred on women who breast-feed at an early age, ERbeta could contribute to this risk reduction by facilitating terminal differentiation of the mammary gland [6].
  • These results suggest that androgens may interact with either AR or PR, and perhaps both receptors, in E2 + TP-induced mammary glands and the induced tumors to effect the reduction in latency period, enhance tumor size, and increase incidence to 100% [7].
  • Critical period for neonatal estrogen exposure in occurrence of mammary gland abnormalities in adult mice [8].
  • In this review we focus on a number of transcription factor families (homeobox, STAT, and Ets), and on inhibitors of transcription factors (Id), which have been implicated in controlling the cell cycle not only in normal mammary gland development but also in breast tumorigenesis [9].
 

High impact information on Mammary Glands, Human

  • In addition, FcRn expression in tissues such as liver, mammary gland, and adult intestine suggests that it may modulate IgG transport at these sites [10].
  • In this way a stable MMTV infection is achieved that ultimately results in infection of the mammary gland and virus transmission via milk [11].
  • The Na(+)/I(-) symporter (NIS) is an intrinsic membrane protein that mediates the active transport of iodide into the thyroid and other tissues, such as salivary glands, gastric mucosa, and lactating mammary gland [12].
  • Suppression of Twist expression in highly metastatic mammary carcinoma cells specifically inhibits their ability to metastasize from the mammary gland to the lung [13].
  • Unexpectedly, elimination of one Trp53 allele completely rescues this embryonic lethality and restores normal mammary gland development [14].
 

Chemical compound and disease context of Mammary Glands, Human

 

Biological context of Mammary Glands, Human

 

Anatomical context of Mammary Glands, Human

 

Associations of Mammary Glands, Human with chemical compounds

 

Gene context of Mammary Glands, Human

 

Analytical, diagnostic and therapeutic context of Mammary Glands, Human

References

  1. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Jonkers, J., Meuwissen, R., van der Gulden, H., Peterse, H., van der Valk, M., Berns, A. Nat. Genet. (2001) [Pubmed]
  2. Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Alexander, C.M., Reichsman, F., Hinkes, M.T., Lincecum, J., Becker, K.A., Cumberledge, S., Bernfield, M. Nat. Genet. (2000) [Pubmed]
  3. Synergy between tumor suppressor APC and the beta-catenin-Tcf4 target Tcf1. Roose, J., Huls, G., van Beest, M., Moerer, P., van der Horn, K., Goldschmeding, R., Logtenberg, T., Clevers, H. Science (1999) [Pubmed]
  4. Expression of a calcium-mobilizing parathyroid hormone-like peptide in lactating mammary tissue. Thiede, M.A., Rodan, G.A. Science (1988) [Pubmed]
  5. Deficiency of p53 accelerates mammary tumorigenesis in Wnt-1 transgenic mice and promotes chromosomal instability. Donehower, L.A., Godley, L.A., Aldaz, C.M., Pyle, R., Shi, Y.P., Pinkel, D., Gray, J., Bradley, A., Medina, D., Varmus, H.E. Genes Dev. (1995) [Pubmed]
  6. Involvement of estrogen receptor beta in terminal differentiation of mammary gland epithelium. Förster, C., Mäkela, S., Wärri, A., Kietz, S., Becker, D., Hultenby, K., Warner, M., Gustafsson, J.A. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  7. Promotion of estrogen-induced mammary gland carcinogenesis by androgen in the male Noble rat: probable mediation by steroid receptors. Liao, D.Z., Pantazis, C.G., Hou, X., Li, S.A. Carcinogenesis (1998) [Pubmed]
  8. Critical period for neonatal estrogen exposure in occurrence of mammary gland abnormalities in adult mice. Bern, H.A., Mills, K.T., Jones, L.A. Proc. Soc. Exp. Biol. Med. (1983) [Pubmed]
  9. Transcriptional control of the cell cycle in mammary gland development and tumorigenesis. Coletta, R.D., Jedlicka, P., Gutierrez-Hartmann, A., Ford, H.L. Journal of mammary gland biology and neoplasia. (2004) [Pubmed]
  10. Multiple roles for the major histocompatibility complex class I- related receptor FcRn. Ghetie, V., Ward, E.S. Annu. Rev. Immunol. (2000) [Pubmed]
  11. Superantigens of mouse mammary tumor virus. Acha-Orbea, H., MacDonald, H.R. Annu. Rev. Immunol. (1995) [Pubmed]
  12. Molecular analysis of the sodium/iodide symporter: impact on thyroid and extrathyroid pathophysiology. De La Vieja, A., Dohan, O., Levy, O., Carrasco, N. Physiol. Rev. (2000) [Pubmed]
  13. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Yang, J., Mani, S.A., Donaher, J.L., Ramaswamy, S., Itzykson, R.A., Come, C., Savagner, P., Gitelman, I., Richardson, A., Weinberg, R.A. Cell (2004) [Pubmed]
  14. Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Xu, X., Qiao, W., Linke, S.P., Cao, L., Li, W.M., Furth, P.A., Harris, C.C., Deng, C.X. Nat. Genet. (2001) [Pubmed]
  15. The mammary gland iodide transporter is expressed during lactation and in breast cancer. Tazebay, U.H., Wapnir, I.L., Levy, O., Dohan, O., Zuckier, L.S., Zhao, Q.H., Deng, H.F., Amenta, P.S., Fineberg, S., Pestell, R.G., Carrasco, N. Nat. Med. (2000) [Pubmed]
  16. Proliferative responses of mouse mammary glands to 17 beta-estradiol and progesterone and modification by mouse mammary tumor virus. Lee, A.E. J. Natl. Cancer Inst. (1983) [Pubmed]
  17. Mammary tumorigenesis in chemical carcinogen-treated mice. IV. Induction of mammary ductal hyperplasias. Medina, D., Warner, M.R. J. Natl. Cancer Inst. (1976) [Pubmed]
  18. Estrogen inhibits the growth of estrogen receptor-negative, but not estrogen receptor-positive, human mammary epithelial cells expressing a recombinant estrogen receptor. Zajchowski, D.A., Sager, R., Webster, L. Cancer Res. (1993) [Pubmed]
  19. Coordinate expression of Cdc25B and ER-alpha is frequent in low-grade endometrioid endometrial carcinoma but uncommon in high-grade endometrioid and nonendometrioid carcinomas. Wu, W., Slomovitz, B.M., Celestino, J., Chung, L., Thornton, A., Lu, K.H. Cancer Res. (2003) [Pubmed]
  20. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Fata, J.E., Kong, Y.Y., Li, J., Sasaki, T., Irie-Sasaki, J., Moorehead, R.A., Elliott, R., Scully, S., Voura, E.B., Lacey, D.L., Boyle, W.J., Khokha, R., Penninger, J.M. Cell (2000) [Pubmed]
  21. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Johnson, M.D., Kenney, N., Stoica, A., Hilakivi-Clarke, L., Singh, B., Chepko, G., Clarke, R., Sholler, P.F., Lirio, A.A., Foss, C., Reiter, R., Trock, B., Paik, S., Martin, M.B. Nat. Med. (2003) [Pubmed]
  22. Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Brisken, C., Heineman, A., Chavarria, T., Elenbaas, B., Tan, J., Dey, S.K., McMahon, J.A., McMahon, A.P., Weinberg, R.A. Genes Dev. (2000) [Pubmed]
  23. Mode of action of selenium inhibition of 7,12-dimethylbenz[a]anthracene-induced mouse mammary tumorigenesis. Lane, H.W., Medina, D. J. Natl. Cancer Inst. (1985) [Pubmed]
  24. Perturbation of beta1-integrin function alters the development of murine mammary gland. Faraldo, M.M., Deugnier, M.A., Lukashev, M., Thiery, J.P., Glukhova, M.A. EMBO J. (1998) [Pubmed]
  25. Localization of xanthine oxidase in mammary-gland epithelium and capillary endothelium. Jarasch, E.D., Grund, C., Bruder, G., Heid, H.W., Keenan, T.W., Franke, W.W. Cell (1981) [Pubmed]
  26. Thy-1 cDNA sequence suggests a novel regulatory mechanism. Moriuchi, T., Chang, H.C., Denome, R., Silver, J. Nature (1983) [Pubmed]
  27. The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Vorbach, C., Scriven, A., Capecchi, M.R. Genes Dev. (2002) [Pubmed]
  28. Combined allogeneic tumor cell vaccination and systemic interleukin 12 prevents mammary carcinogenesis in HER-2/neu transgenic mice. Nanni, P., Nicoletti, G., De Giovanni, C., Landuzzi, L., Di Carlo, E., Cavallo, F., Pupa, S.M., Rossi, I., Colombo, M.P., Ricci, C., Astolfi, A., Musiani, P., Forni, G., Lollini, P.L. J. Exp. Med. (2001) [Pubmed]
  29. The developmental pattern of Brca1 expression implies a role in differentiation of the breast and other tissues. Marquis, S.T., Rajan, J.V., Wynshaw-Boris, A., Xu, J., Yin, G.Y., Abel, K.J., Weber, B.L., Chodosh, L.A. Nat. Genet. (1995) [Pubmed]
  30. The differential actions of cortisol on the accumulation of alpha-lactalbumin and casein in midpregnant mouse mammary gland in culture. Ono, M., Oka, T. Cell (1980) [Pubmed]
  31. Specificity of tissue interaction and origin of mesenchymal cells in the androgen response of the embryonic mammary gland. Dürnberger, H., Kratochwil, K. Cell (1980) [Pubmed]
  32. Regression of mouse mammary gland anlagen in recombinants of Tfm and wild-type tissues: testosterone acts via the mesenchyme. Drews, U., Drews, U. Cell (1977) [Pubmed]
  33. Influence of local vascularity on hormone receptors in mammary gland. Moore, B.P., Forsyth, I.A. Nature (1980) [Pubmed]
  34. IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cao, Y., Bonizzi, G., Seagroves, T.N., Greten, F.R., Johnson, R., Schmidt, E.V., Karin, M. Cell (2001) [Pubmed]
  35. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1. Pierce, D.F., Johnson, M.D., Matsui, Y., Robinson, S.D., Gold, L.I., Purchio, A.F., Daniel, C.W., Hogan, B.L., Moses, H.L. Genes Dev. (1993) [Pubmed]
  36. A ligand of peroxisome proliferator-activated receptor gamma, retinoids, and prevention of preneoplastic mammary lesions. Mehta, R.G., Williamson, E., Patel, M.K., Koeffler, H.P. J. Natl. Cancer Inst. (2000) [Pubmed]
  37. Glycosylation-dependent cell adhesion molecule 1 (GlyCAM 1) mucin is expressed by lactating mammary gland epithelial cells and is present in milk. Dowbenko, D., Kikuta, A., Fennie, C., Gillett, N., Lasky, L.A. J. Clin. Invest. (1993) [Pubmed]
  38. Long-term effects of neonatal steroid exposure on mammary gland development and tumorigenesis in mice. Mori, T., Bern, H.A., Mills, K.T., Young, P.N. J. Natl. Cancer Inst. (1976) [Pubmed]
  39. Growth of mouse mammary glands after neonatal sex hormone treatment. Tomooka, Y., Bern, H.A. J. Natl. Cancer Inst. (1982) [Pubmed]
 
WikiGenes - Universities