The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

An essential role of DmRad51/SpnA in DNA repair and meiotic checkpoint control.

Rad51 is a conserved protein essential for recombinational repair of double-stranded DNA breaks (DSBs) in somatic cells and during meiosis in germ cells. Yeast Rad51 mutants are viable but show meiosis defects. In the mouse, RAD51 deletions cause early embryonic death, suggesting that in higher eukaryotes Rad51 is required for viability. Here we report the identification of SpnA as the Drosophila Rad51 gene, whose sequence among the five known Drosophila Rad51-like genes is most closely related to the Rad51 homologs of human and yeast. DmRad51/spnA null mutants are viable but oogenesis is disrupted by the activation of a meiotic recombination checkpoint. We show that the meiotic phenotypes result from an inability to effectively repair DSBs. Our study further demonstrates that in Drosophila the Rad51-dependent homologous recombination pathway is not essential for DNA repair in the soma, unless exposed to DNA damaging agents. We therefore propose that under normal conditions a second, Rad51-independent, repair pathway prevents the lethal effects of DNA damage.[1]


  1. An essential role of DmRad51/SpnA in DNA repair and meiotic checkpoint control. Staeva-Vieira, E., Yoo, S., Lehmann, R. EMBO J. (2003) [Pubmed]
WikiGenes - Universities