The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

MER1  -  Mer1p

Saccharomyces cerevisiae S288c

Synonyms: Meiotic recombination 1 protein, N1330, YNL210W
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of MER1


High impact information on MER1


Biological context of MER1


Anatomical context of MER1


Associations of MER1 with chemical compounds


Physical interactions of MER1


Enzymatic interactions of MER1

  • By analogy with the mechanism of action of known type II topoisomerases, we suggest that Spo11 catalyses the formation of double-strand breaks that initiate meiotic recombination in S. cerevisiae [29].
  • Hyperactivation of the meiotic recombination checkpoint caused by the failure to repair DSBs results in accumulation and persistence of phosphorylated Sae2, indicating a possible link between checkpoint activation and meiosis-induced Sae2 phosphorylation [30].

Regulatory relationships of MER1


Other interactions of MER1


Analytical, diagnostic and therapeutic context of MER1


  1. Selection for early meiotic mutants in yeast. Mitchell, A.P., Bowdish, K.S. Genetics (1992) [Pubmed]
  2. Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA. Shinohara, A., Ogawa, H., Matsuda, Y., Ushio, N., Ikeo, K., Ogawa, T. Nat. Genet. (1993) [Pubmed]
  3. Interaction between ATM protein and c-Abl in response to DNA damage. Shafman, T., Khanna, K.K., Kedar, P., Spring, K., Kozlov, S., Yen, T., Hobson, K., Gatei, M., Zhang, N., Watters, D., Egerton, M., Shiloh, Y., Kharbanda, S., Kufe, D., Lavin, M.F. Nature (1997) [Pubmed]
  4. Molecular analysis of recombination in a family with Duchenne muscular dystrophy and a large pericentric X chromosome inversion. Shashi, V., Golden, W.L., Allinson, P.S., Blanton, S.H., von Kap-Herr, C., Kelly, T.E. Am. J. Hum. Genet. (1996) [Pubmed]
  5. Localization of a portion of extranuclear ATM to peroxisomes. Watters, D., Kedar, P., Spring, K., Bjorkman, J., Chen, P., Gatei, M., Birrell, G., Garrone, B., Srinivasa, P., Crane, D.I., Lavin, M.F. J. Biol. Chem. (1999) [Pubmed]
  6. The FK506 binding protein Fpr3 counteracts protein phosphatase 1 to maintain meiotic recombination checkpoint activity. Hochwagen, A., Tham, W.H., Brar, G.A., Amon, A. Cell (2005) [Pubmed]
  7. Saccharomyces cerevisiae Mer3 helicase stimulates 3'-5' heteroduplex extension by Rad51; implications for crossover control in meiotic recombination. Mazina, O.M., Mazin, A.V., Nakagawa, T., Kolodner, R.D., Kowalczykowski, S.C. Cell (2004) [Pubmed]
  8. Targeted stimulation of meiotic recombination. Peciña, A., Smith, K.N., Mézard, C., Murakami, H., Ohta, K., Nicolas, A. Cell (2002) [Pubmed]
  9. An initiation site for meiotic crossing-over and gene conversion in the mouse. Guillon, H., de Massy, B. Nat. Genet. (2002) [Pubmed]
  10. MER1, a yeast gene required for chromosome pairing and genetic recombination, is induced in meiosis. Engebrecht, J., Roeder, G.S. Mol. Cell. Biol. (1990) [Pubmed]
  11. The sequence of a 13.5 kb DNA segment from the left arm of yeast chromosome XIV reveals MER1; RAP1; a new putative member of the DNA replication complex and a new putative serine/threonine phosphatase gene. Coster, F., Van Dyck, L., Jonniaux, J.L., Purnelle, B., Goffeau, A. Yeast (1995) [Pubmed]
  12. Test of intron predictions reveals novel splice sites, alternatively spliced mRNAs and new introns in meiotically regulated genes of yeast. Davis, C.A., Grate, L., Spingola, M., Ares, M. Nucleic Acids Res. (2000) [Pubmed]
  13. A yeast intronic splicing enhancer and Nam8p are required for Mer1p-activated splicing. Spingola, M., Ares, M. Mol. Cell (2000) [Pubmed]
  14. Positional cloning of the gene for Nijmegen breakage syndrome. Matsuura, S., Tauchi, H., Nakamura, A., Kondo, N., Sakamoto, S., Endo, S., Smeets, D., Solder, B., Belohradsky, B.H., Der Kaloustian, V.M., Oshimura, M., Isomura, M., Nakamura, Y., Komatsu, K. Nat. Genet. (1998) [Pubmed]
  15. A subset of Mer1p-dependent introns requires Bud13p for splicing activation and nuclear retention. Scherrer, F.W., Spingola, M. RNA (2006) [Pubmed]
  16. The mei-41 gene of D. melanogaster is a structural and functional homolog of the human ataxia telangiectasia gene. Hari, K.L., Santerre, A., Sekelsky, J.J., McKim, K.S., Boyd, J.B., Hawley, R.S. Cell (1995) [Pubmed]
  17. A mouse homolog of the Escherichia coli recA and Saccharomyces cerevisiae RAD51 genes. Morita, T., Yoshimura, Y., Yamamoto, A., Murata, K., Mori, M., Yamamoto, H., Matsushiro, A. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  18. Hrs1p/Mcp6p on the meiotic SPB organizes astral microtubule arrays for oscillatory nuclear movement. Tanaka, K., Kohda, T., Yamashita, A., Nonaka, N., Yamamoto, M. Curr. Biol. (2005) [Pubmed]
  19. Identification of residues in yeast Spo11p critical for meiotic DNA double-strand break formation. Diaz, R.L., Alcid, A.D., Berger, J.M., Keeney, S. Mol. Cell. Biol. (2002) [Pubmed]
  20. Involvement of the MRE2 gene of yeast in formation of meiosis-specific double-strand breaks and crossover recombination through RNA splicing. Nakagawa, T., Ogawa, H. Genes Cells (1997) [Pubmed]
  21. Calcium ion promotes yeast Dmc1 activity via formation of long and fine helical filaments with single-stranded DNA. Lee, M.H., Chang, Y.C., Hong, E.L., Grubb, J., Chang, C.S., Bishop, D.K., Wang, T.F. J. Biol. Chem. (2005) [Pubmed]
  22. An essential gene, ESR1, is required for mitotic cell growth, DNA repair and meiotic recombination in Saccharomyces cerevisiae. Kato, R., Ogawa, H. Nucleic Acids Res. (1994) [Pubmed]
  23. Meiosis-dependent tyrosine phosphorylation of a yeast protein related to the mouse p51ferT. Navon, A., Schwarz, Y., Hazan, B., Kassir, Y., Nir, U. Mol. Gen. Genet. (1994) [Pubmed]
  24. Synaptonemal complex (SC) component Zip1 plays a role in meiotic recombination independent of SC polymerization along the chromosomes. Storlazzi, A., Xu, L., Schwacha, A., Kleckner, N. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  25. DNA-binding activities of Hop1 protein, a synaptonemal complex component from Saccharomyces cerevisiae. Kironmai, K.M., Muniyappa, K., Friedman, D.B., Hollingsworth, N.M., Byers, B. Mol. Cell. Biol. (1998) [Pubmed]
  26. Rad52 associates with RPA and functions with rad55 and rad57 to assemble meiotic recombination complexes. Gasior, S.L., Wong, A.K., Kora, Y., Shinohara, A., Bishop, D.K. Genes Dev. (1998) [Pubmed]
  27. Binding of a cell-type-specific RNA splicing factor to its target regulatory sequence. Nandabalan, K., Roeder, G.S. Mol. Cell. Biol. (1995) [Pubmed]
  28. The structure of Ski8p, a protein regulating mRNA degradation: Implications for WD protein structure. Madrona, A.Y., Wilson, D.K. Protein Sci. (2004) [Pubmed]
  29. An atypical topoisomerase II from Archaea with implications for meiotic recombination. Bergerat, A., de Massy, B., Gadelle, D., Varoutas, P.C., Nicolas, A., Forterre, P. Nature (1997) [Pubmed]
  30. Budding Yeast Sae2 is an In Vivo Target of the Mec1 and Tel1 Checkpoint Kinases During Meiosis. Cartagena-Lirola, H., Guerini, I., Viscardi, V., Lucchini, G., Longhese, M.P. Cell Cycle (2006) [Pubmed]
  31. Meiotic gene conversion and crossing over: their relationship to each other and to chromosome synapsis and segregation. Engebrecht, J., Hirsch, J., Roeder, G.S. Cell (1990) [Pubmed]
  32. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Moreau, S., Ferguson, J.R., Symington, L.S. Mol. Cell. Biol. (1999) [Pubmed]
  33. A transcriptional cascade governs entry into meiosis in Saccharomyces cerevisiae. Smith, H.E., Mitchell, A.P. Mol. Cell. Biol. (1989) [Pubmed]
  34. Ama1p is a meiosis-specific regulator of the anaphase promoting complex/cyclosome in yeast. Cooper, K.F., Mallory, M.J., Egeland, D.B., Jarnik, M., Strich, R. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  35. Heteroduplex DNA formation and homolog pairing in yeast meiotic mutants. Nag, D.K., Scherthan, H., Rockmill, B., Bhargava, J., Roeder, G.S. Genetics (1995) [Pubmed]
  36. Examination of the intron in the meiosis-specific recombination gene REC114 in Saccharomyces. Malone, R.E., Pittman, D.L., Nau, J.J. Mol. Gen. Genet. (1997) [Pubmed]
  37. Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae. Ajimura, M., Leem, S.H., Ogawa, H. Genetics (1993) [Pubmed]
  38. The yeast MER2 gene is required for chromosome synapsis and the initiation of meiotic recombination. Rockmill, B., Engebrecht, J.A., Scherthan, H., Loidl, J., Roeder, G.S. Genetics (1995) [Pubmed]
  39. The nucleotide mapping of DNA double-strand breaks at the CYS3 initiation site of meiotic recombination in Saccharomyces cerevisiae. de Massy, B., Rocco, V., Nicolas, A. EMBO J. (1995) [Pubmed]
  40. Autoregulated expression of Schizosaccharomyces pombe meiosis-specific transcription factor Mei4 and a genome-wide search for its target genes. Abe, H., Shimoda, C. Genetics (2000) [Pubmed]
  41. Molecular cloning and characterization of RAD51-like genes from Arabidopsis thaliana. Osakabe, K., Yoshioka, T., Ichikawa, H., Toki, S. Plant Mol. Biol. (2002) [Pubmed]
WikiGenes - Universities