The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Diglucosyl-glycerolipids from the marine sponge-associated Bacillus pumilus strain AAS3: their production, enzymatic modification and properties.

The marine strain Bacillus pumilus strain AAS3, isolated from the Mediterranean sponge Acanthella acuta, produced a diglucosyl-glycerolipid, 1,2-O-diacyl-3-[beta-glucopyranosyl-(1-6)-beta-glucopyranosyl)]glycerol, with 14-methylhexadecanoic acid and 12-methyltetradecanoic acid as the main fatty acid moieties (GGL11). On a 30 l scale, using artificial seawater supplemented with glucose (20 g/l), yeast extract (10 g/l), and suitable nitrogen/phosphate sources, growth-associated glycoglycerolipid production reached its maximum yield of 90 mg/l after 11 h. Lipase-catalyzed modification of the native substance led to the deacylated parent compound (GG11), which could be reacylated using the same enzyme system to afford a new dipentenoyl-diglucosylglycerol (GGL12) as the major product upon addition of 4-pentenoic acid to the medium. GGL11 decreased the surface tension of water from 72 mN/m to 29 mN/m and the interfacial tension of the water/ n-hexadecane system from 44 to 5 mN/m. Anti-tumor-promoting studies on this class of diglucosyl glycerol products showed that the carbohydrate/glycerol backbone (GG11) has a more potent inhibitory activity than the acylated compounds. The diglucosyl-glycerol GG11 strongly inhibited growth of the tumor cell lines HM02 and Hep G2 (50% inhibition at approximately 1 microg/ml), while the glycerolipids GGL11 and GGL12 were less active or had no effect.[1]

References

  1. Diglucosyl-glycerolipids from the marine sponge-associated Bacillus pumilus strain AAS3: their production, enzymatic modification and properties. Ramm, W., Schatton, W., Wagner-Döbler, I., Wray, V., Nimtz, M., Tokuda, H., Enjyo, F., Nishino, H., Beil, W., Heckmann, R., Lurtz, V., Lang, S. Appl. Microbiol. Biotechnol. (2004) [Pubmed]
 
WikiGenes - Universities