The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

DNA replication of mitotic chromatin in Xenopus egg extracts.

Prereplication complexes are assembled at eukaryotic origins of DNA replication in the G1 phase of the cell cycle, and they are activated in S phase by cyclin-dependent kinase (Cdk)2/cyclin E and Cdk2/ cyclin A. Previous experiments using Xenopus nuclear assembly egg extracts suggested that Cdk1/ cyclin A, which is normally active in early mitosis, can replace the function of Cdk2 in driving DNA replication, whereas Cdk1/cyclin B, which functions later in mitosis, cannot. Here, we use a completely soluble replication system derived from Xenopus egg extracts to show that Cdk1/cyclin B also can support DNA replication. The ability of mitotic Cdks to drive DNA replication raises the question of whether DNA replication is possible in mitosis. To address this question, chromatin containing prereplication complexes was driven into mitosis with Cdk1/cyclin B. Strikingly, upon addition of a replication extract, the chromatin underwent a complete round of DNA replication. Replicating mitotic chromosomes became visibly decondensed, and, after DNA replication was complete, they recondensed. Our results indicate that there is extensive overlap in the substrate specificity of the major metazoan Cdk/cyclin complexes and that mitosis is not fundamentally incompatible with DNA replication. The results suggest that origins that fail to initiate DNA replication in S phase might still be able to do so in mitosis.[1]


  1. DNA replication of mitotic chromatin in Xenopus egg extracts. Prokhorova, T.A., Mowrer, K., Gilbert, C.H., Walter, J.C. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
WikiGenes - Universities