The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Identification, cloning, and characterization of rcsF, a new regulator gene for exopolysaccharide synthesis that suppresses the division mutation ftsZ84 in Escherichia coli K-12.

A new gene, designated rcsF, was located adjacent to drpA at the 5.2-min position of the genetic map of Escherichia coli. The deduced amino acid sequence encoded by the rcsF gene indicates a small protein of 133 amino acid residues with a calculated pI of 10.8 that is rich in proline, serine, alanine, and cysteine residues. When overexpressed as a result of its presence on a multicopy plasmid, rcsF confers a mucoid phenotype and restores colony formation to ftsZ84 mutant cells on L agar medium containing no added NaCl. These two phenotypes are not observed in rcsB mutant cells. Ion mutant cells harboring an rcsF mutation accumulate considerably lower levels of exopolysaccharides, whereas the presence of a multicopy rcsF plasmid not only increases capsule synthesis but also confers a mucoid phenotype at 37 degrees C, a temperature at which ion mutant cells are known not to form mucoid colonies. RcsF does not stimulate the expression of rcsB, indicating that it exerts its action through the RcsB protein, possibly by phosphorylation. It is also shown that RcsF stimulation of capsule synthesis is RcsA-dependent, whereas colony formation of ftsZ84 mutant cells can be restored by RcsF in the absence of RcsA.[1]

References

 
WikiGenes - Universities